9 research outputs found
Extracellular Stimuli Specifically Regulate Localized Levels of Individual Neuronal mRNAs
Subcellular regulation of protein synthesis requires the correct localization of messenger RNAs (mRNAs) within the cell. In this study, we investigate whether the axonal localization of neuronal mRNAs is regulated by extracellular stimuli. By profiling axonal levels of 50 mRNAs detected in regenerating adult sensory axons, we show that neurotrophins can increase and decrease levels of axonal mRNAs. Neurotrophins (nerve growth factor, brainderived neurotrophic factor, and neurotrophin-3) regulate axonal mRNA levels and use distinct downstream signals to localize individual mRNAs. However, myelin-associated glycoprotein and semaphorin 3A regulate axonal levels of different mRNAs and elicit the opposite effect on axonal mRNA levels from those observed with neurotrophins. The axonal mRNAs accumulate at or are depleted from points of ligand stimulation along the axons. The translation product of a chimeric green fluorescent protein–β-actin mRNA showed similar accumulation or depletion adjacent to stimuli that increase or decrease axonal levels of endogenous β-actin mRNA. Thus, extracellular ligands can regulate protein generation within subcellular regions by specifically altering the localized levels of particular mRNAs
Mitochondria Coordinate Sites of Axon Branching through Localized Intra-axonal Protein Synthesis
The branching of axons is a fundamental aspect of nervous system development and neuroplasticity. We report that branching of sensory axons in the presence of nerve growth factor (NGF) occurs at sites populated by stalled mitochondria. Translational machinery targets to presumptive branching sites, followed by recruitment of mitochondria to these sites. The mitochondria promote branching through ATP generation and the determination of localized hot spots of active axonal mRNA translation, which contribute to actin-dependent aspects of branching. In contrast, mitochondria do not have a role in the regulation of the microtubule cytoskeleton during NGF-induced branching. Collectively, these observations indicate that sensory axons exhibit multiple potential sites of translation, defined by presence of translational machinery, but active translation occurs following the stalling and respiration of mitochondria at these potential sites of translation. This study reveals a local role for axonal mitochondria in the regulation of the actin cytoskeleton and axonal mRNA translation underlying branching