45 research outputs found

    The non-invasive biopsy: will urinary proteomics make the renal tissue biopsy redundant?

    Get PDF
    Proteomics is a rapidly advancing technique which gives a functional insight into gene expression in living organisms. Urine is an ideal medium for study as it is readily available, easily obtained and less complex than other bodily fluids. Considerable progress has been made over the last 5 years in the study of urinary proteomics as a diagnostic tool for renal disease. The advantages of this technique over the traditional renal biopsy include accessibility, safety, the possibility of serial sampling, and the potential for non-invasive prognostic and diagnostic monitoring of disease and an individual’s response to treatment. Urinary proteomics is now moving from a discovery phase in small studies to a validation phase in much larger numbers of patients with renal disease. Whilst there are still some limitations in methodology, which are assessed in this review, the possibility of urinary proteomics replacing the invasive tissue biopsy for diagnosis of renal disease is becoming increasingly realistic

    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells

    No full text
    Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α

    Collagenase and Melanogenesis Inhibitory Effects of Perilla Frutescens Pomace Extract and Its Efficacy in Topical Cosmetic Formulations

    No full text
    In previous studies, Perilla frutescens pomace was shown to contain bioactive phenolic compounds and good anti-oxidative activity. However, reports about collagenase activity and melanogenesis inhibitory effects of P. frutescens pomace are limited. This study aimed to evaluate the bioactivity of P. frutescens pomace extract and incorporate the extract into a cosmetic formulation for evaluating its effects on collagenase and melanogenesis inhibition on human skin. The P. frutescens seeds after an oil pressing process were extracted with ethanol (70% v/v) in order to examine the remaining phytochemical compounds, the bioactivity in pomace perilla, and its efficacy as a skincare product. In this study, total phenolic and total flavonoid contents of P. frutescens seed extract (PFSE) were determined using spectrophotometry. The free radical scavenging activity was determined with 2, 2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals. Additionally, the effects on collagenase activity, melanin content, and alpha-Melanocyte stimulating hormone (α-MSH) on the viability of cultured B16F10 melanoma cells were investigated. Skin irritation and efficacy of PFSE cream for skin elasticity and skin color were also clinically evaluated. The total phenolic content with gallic acid equivalents (GAE) value and total flavonoids content with catechin equivalents (CE) value were, respectively, 92.79 ± 1.19 and 56.02 ± 2.83 mg/g. Furthermore, PFSE significantly inhibited the collagenase activity (p < 0.001) at the concentration of 400 µg/mL (82 ± 3.23%). These results clearly demonstrated the anti-melanogenic effects on B16F10 cells without causing any cytotoxicity or death. Although there was a slight improvement in skin elasticity in the 4th week compared to the previous week, the 4th week melanin content of the skin significantly decreased from the beginning (p < 0.05) without any irritations. In conclusion, PFSE could be cosmetically considered as a key ingredient that effectively lessens the effects of skin aging and skin hyperpigmentation disorders

    Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Κb and Akt Signaling Pathways

    No full text
    Particulate matter from forest fires (PMFF) is an environmental pollutant causing oxidative stress, inflammation, and cancer cell metastasis due to the presence of polycyclic aromatic hydrocarbons (PAHs). Perilla seed meal contains high levels of polyphenols, including rosmarinic acid (RA). The aim of this study is to determine the anti-oxidative stress, anti-inflammation, and anti-metastasis actions of rosmarinic acid rich fraction (RA-RF) from perilla seed meal and its underlying molecular mechanisms in A549 cells exposed to PMFF. PMFF samples were collected via the air sampler at the University of Phayao, Thailand, and their PAH content were analyzed using GC-MS. Fifteen PAH compounds were detected in PMFF. The PMFF significantly induced intracellular reactive oxygen species (ROS) production, the mRNA expression of pro-inflammatory cytokines, MMP-9 activity, invasion, migration, the overexpression of c-Jun and p-65-NF-κB, and Akt phosphorylation. Additionally, the RA-RF significantly reduced ROS production, IL-6, IL-8, TNF-α, and COX-2. RA-RF could also suppress MMP-9 activity, migration, invasion, and the phosphorylation activity of c-Jun, p-65-NF-κB, and Akt. Our findings revealed that RA-RF has antioxidant, anti-inflammatory, and anti-metastasis properties via c-Jun, p-65-NF-κB, and Akt signaling pathways. RA-RF may be further developed as an inhalation agent for the prevention of lung inflammation and cancer metastasis induced by PM exposure

    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells

    No full text
    Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α

    The Effects of Synbiotics Administration on Stress-Related Parameters in Thai Subjects—A Preliminary Study

    No full text
    Urbanization influences our lifestyle, especially in fast-paced environments where we are more prone to stress. Stress management is considered advantageous in terms of longevity. The use of probiotics for psychological treatment has a small amount of diverse proven evidence to support this. However, studies on stress management in stressed subjects using synbiotics are still limited. The present study aimed to investigate the effects of synbiotics on stress in the Thai population. A total of 32 volunteers were enrolled and screened using a Thai Stress Test (TST) to determine their stress status. Participants were divided into the stressed and the non-stressed groups. Synbiotics preparation comprised a mixture of probiotics strains in a total concentration of 1 × 1010 CFU/day (5.0 × 109 CFU of Lactobacillus paracasei HII01 and 5.0 × 109 CFU of Bifidobacterium animalis subsp. lactis) and 10 g prebiotics (5 g galacto-oligosaccharides (GOS), and 5 g oligofructose (FOS)). All parameters were measured at baseline and after the 12th week of the study. In the stressed group, the administration of synbiotics significantly (p < 0.05) reduced the negative scale scores of TST, and tryptophan. In the non-stressed group, the synbiotics administration decreased tryptophan significantly (p < 0.05), whereas dehydroepiandrosterone sulfate (DHEA-S), tumor necrosis factor-α (TNF-α), 5-hydroxyindoleacetic acid (5-HIAA), and short-chain fatty acids (SCFAs), acetate and propionate were increased significantly (p < 0.05). In both groups, cortisol, and lipopolysaccharide (LPS) were reduced, whereas anti-inflammatory mediator interleukin-10 (IL-10) and immunoglobulin A (IgA) levels were increased. In conclusion, synbiotics administration attenuated the negative feelings via the negative scale scores of TST in stressed participants by modulating the HPA-axis, IL-10, IgA, and LPS. In comparison, synbiotics administration for participants without stress did not benefit stress status but showed remodeling SCFAs components, HPA-axis, and tryptophan catabolism

    Toward a standardized urine proteome analysis methodology

    No full text
    International audienceUrine is an easily accessible bodily fluid particularly suited for the routine clinical analysis of disease biomarkers. Actually, the urinary proteome is more diverse than anticipated a decade ago. Hence, significant analytical and practical issues of urine proteomics such as sample collection and preparation have emerged, in particular for large-scale studies. We have undertaken a systematic study to define standardized and integrated analytical protocols for a biomarker development pipeline, employing two LC-MS analytical platforms, namely accurate mass and time tags and selected reaction monitoring, for the discovery and verification phase, respectively. Urine samples collected from hospital patients were processed using four different protocols, which were evaluated and compared on both analytical platforms. Addition of internal standards at various stages of sample processing allowed the estimation of protein extraction yields and the absolute quantification of selected urinary proteins. Reproducibility of the entire process and dynamic range of quantification were also evaluated. Organic solvent precipitation followed by in-solution digestion provided the best performances and was thus selected as the standard method common to the discovery and verification phases. Finally, we applied this protocol for platforms' cross-validation and obtained excellent consistency between urinary protein concentration estimates by both analytical methods performed in parallel in two laboratories
    corecore