72 research outputs found

    Thoroughness of Mediastinal Staging in Stage IIIA Non-small Cell Lung Cancer

    Get PDF
    IntroductionGuidelines recommend that patients with clinical stage IIIA non-small cell lung cancer (NSCLC) undergo histologic confirmation of pathologic lymph nodes. Studies have suggested that invasive mediastinal staging is underutilized, although practice patterns have not been rigorously evaluated.MethodsWe used the Surveillance, Epidemiology, and End Results-Medicare database to identify patients with stage IIIA NSCLC diagnosed from 1998 through 2005. Invasive staging and use of positron emission tomography (PET) scanning were assessed using Medicare claims. Multivariable logistic regression was used to identify patient characteristics associated with use of invasive staging.ResultsOf 7583 stage IIIA NSCLC patients, 1678 (22%) underwent invasive staging. Patients who received curative intent cancer treatment were more likely to undergo invasive staging than patients who did not receive cancer-specific therapy (30% versus 9.8%, adjusted odds ratio, 3.31; 95% confidence interval, 2.78–3.95). The oldest patients (age, 85–94 years) were less likely to receive invasive staging than the youngest (age, 67–69 years; 27.6% versus 11.9%; odds ratio, 0.46; 95% confidence interval, 0.34–0.61). Sex, marital status, income, and race were not associated with the use of the invasive staging. The use of invasive staging was stable throughout the study period, despite an increase in the use of PET scanning from less than 10% of patients before 2000 to almost 70% in 2005.ConclusionNearly 80% of Medicare beneficiaries with stage IIIA NSCLC do not receive guideline adherent mediastinal staging; this failure cannot be entirely explained by patient factors or a reliance on PET imaging. Incentives to encourage use of invasive staging may improve care

    DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress

    Get PDF
    The mechanisms by which neoplastic cells tolerate oncogene-induced DNA replication stress are poorly understood. Cyclin-dependent kinase 2 (CDK2) is a major mediator of oncogenic DNA replication stress. In this study, we show that CDK2-inducing stimuli (including Cyclin E overexpression, oncogenic RAS, and WEE1 inhibition) activate the DNA repair protein RAD18. CDK2-induced RAD18 activation required initiation of DNA synthesis and was repressed by p53. RAD18 and its effector, DNA polymerase κ (Polκ), sustained ongoing DNA synthesis in cells harboring elevated CDK2 activity. RAD18-deficient cells aberrantly accumulated single-stranded DNA (ssDNA) after CDK2 activation. In RAD18-depleted cells, the G2/M checkpoint was necessary to prevent mitotic entry with persistent ssDNA. Rad18 −/− and Polκ −/− cells were highly sensitive to the WEE1 inhibitor MK-1775 (which simultaneously activates CDK2 and abrogates the G2/M checkpoint). Collectively, our results show that the RAD18–Polκ signaling axis allows tolerance of CDK2-mediated oncogenic stress and may allow neoplastic cells to breach tumorigenic barriers

    CCC meets ICU: Redefining the role of critical care of cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently the majority of cancer patients are considered ineligible for intensive care treatment and oncologists are struggling to get their patients admitted to intensive care units. Critical care and oncology are frequently two separate worlds that communicate rarely and thus do not share novel developments in their fields. However, cancer medicine is rapidly improving and cancer is eventually becoming a chronic disease. Oncology is therefore characterized by a growing number of older and medically unfit patients that receive numerous novel drug classes with unexpected side effects.</p> <p>Discussion</p> <p>All of these changes will generate more medically challenging patients in acute distress that need to be considered for intensive care. An intense exchange between intensivists, oncologists, psychologists and palliative care specialists is warranted to communicate the developments in each field in order to improve triage and patient treatment. Here, we argue that "critical care of cancer patients" needs to be recognized as a medical subspecialty and that there is an urgent need to develop it systematically.</p> <p>Conclusion</p> <p>As prognosis of cancer improves, novel therapeutic concepts are being introduced and more and more older cancer patients receive full treatment the number of acutely ill patients is growing significantly. This development a major challenge to current concepts of intensive care and it needs to be redefined who of these patients should be treated, for how long and how intensively.</p

    Divergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators

    Get PDF
    The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period

    Meta-analysis of archived DNA microarrays identifies genes regulated by hypoxia and involved in a metastatic phenotype in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis is a major cancer-related cause of death. Recent studies have described metastasis pathways. However, the exact contribution of each pathway remains unclear. Another key feature of a tumor is the presence of hypoxic areas caused by a lack of oxygen at the center of the tumor. Hypoxia leads to the expression of pro-metastatic genes as well as the repression of anti-metastatic genes. As many Affymetrix datasets about metastasis and hypoxia are publicly available and not fully exploited, this study proposes to re-analyze these datasets to extract new information about the metastatic phenotype induced by hypoxia in different cancer cell lines.</p> <p>Methods</p> <p>Affymetrix datasets about metastasis and/or hypoxia were downloaded from GEO and ArrayExpress. AffyProbeMiner and GCRMA packages were used for pre-processing and the Window Welch <it>t </it>test was used for processing. Three approaches of meta-analysis were eventually used for the selection of genes of interest.</p> <p>Results</p> <p>Three complementary approaches were used, that eventually selected 183 genes of interest. Out of these 183 genes, 99, among which the well known <it>JUNB</it>, <it>FOS </it>and <it>TP63</it>, have already been described in the literature to be involved in cancer. Moreover, 39 genes of those, such as <it>SERPINE1 </it>and <it>MMP7</it>, are known to regulate metastasis. Twenty-one genes including <it>VEGFA </it>and <it>ID2 </it>have also been described to be involved in the response to hypoxia. Lastly, DAVID classified those 183 genes in 24 different pathways, among which 8 are directly related to cancer while 5 others are related to proliferation and cell motility. A negative control composed of 183 random genes failed to provide such results. Interestingly, 6 pathways retrieved by DAVID with the 183 genes of interest concern pathogen recognition and phagocytosis.</p> <p>Conclusion</p> <p>The proposed methodology was able to find genes actually known to be involved in cancer, metastasis and hypoxia and, thus, we propose that the other genes selected based on the same methodology are of prime interest in the metastatic phenotype induced by hypoxia.</p

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF
    corecore