32 research outputs found

    Terrestrial trophic dynamics in the Canadian Arctic

    Get PDF
    The Swedish Tundra Northwest Expedition of 1999 visited 17 sites throughout the Canadian Arctic. At 12 sites that were intensively sampled we estimated the standing crop of plants and the densities of herbivores and predators with an array of trapping, visual surveys, and faecal-pellet transects. We developed a trophic-balance model using ECOPATH to integrate these observations and determine the fate of primary and secondary production in these tundra ecosystems, which spanned an 8-fold range of standing crop of plants. We estimated that about 13% of net primary production was consumed by herbivores, while over 70% of small-herbivore production was estimated to flow to predators. Only 9% of large-herbivore production was consumed by predators. Organization of Canadian Arctic ecosystems appears to be more top-down than bottom-up. Net primary production does not seem to be herbivore-limited at any site. This is the first attempt to integrate trophic dynamics over the entire Canadian Arctic

    Consequences of past climate change and recent human persecution on mitogenomic diversity in the arctic fox

    Get PDF
    Ancient DNA provides a powerful means to investigate the timing, rate and extent of population declines caused by extrinsic factors, such as past climate change and human activities. One species probably affected by both these factors is the arctic fox, which had a large distribution during the last glaciation that subsequently contracted at the start of the Holocene. More recently, the arctic fox population in Scandinavia went through a demographic bottleneck owing to human persecution. To investigate the consequences of these processes, we generated mitogenome sequences from a temporal dataset comprising Pleistocene, historical and modern arctic fox samples. We found no evidence that Pleistocene populations in mid-latitude Europe or Russia contributed to the present-day gene pool of the Scandinavian population, suggesting that postglacial climate warming led to local population extinctions. Furthermore, during the twentieth-century bottleneck in Scandinavia, at least half of the mitogenome haplotypes were lost, consistent with a 20-fold reduction in female effective population size. In conclusion, these results suggest that the arctic fox in mainland Western Europe has lost genetic diversity as a result of both past climate change and human persecution. Consequently, it might be particularly vulnerable to the future Challenges posed by climate change. This article is part of a discussion meeting issue ‘The past is a Foreign country: how much can the fossil record actually inform conservation?’publishedVersio

    Carnivore conservation in practice : replicatedmanagement actions on a large spatial scale

    No full text
    More than a quarter of the world’s carnivores are threatened, often due to multiple andcomplex causes. Considerable research efforts are devoted to resolving the mechanisms behindthese threats in order to provide a basis for relevant conservation actions. However, evenwhen the underlying mechanisms are known, specific actions aimed at direct support for carnivoresare difficult to implement and evaluate at efficient spatial and temporal scales.2. We report on a 30-year inventory of the critically endangered Fennoscandian arctic foxVulpes lagopus L., including yearly surveys of 600 fox dens covering 21 000 km2. These surveysshowed that the population was close to extinction in 2000, with 40–60 adult animalsleft. However, the population subsequently showed a fourfold increase in size.3. During this time period, conservation actions through supplementary feeding and predatorremoval were implemented in several regions across Scandinavia, encompassing 79% of thearea. To evaluate these actions, we examined the effect of supplemental winter feeding andred fox control applied at different intensities in 10 regions. A path analysis indicated that47% of the explained variation in population productivity could be attributed to lemmingabundance, whereas winter feeding had a 29% effect and red fox control a 20% effect.4. This confirms that arctic foxes are highly dependent on lemming population fluctuationsbut also shows that red foxes severely impact the viability of arctic foxes. This study also highlightsthe importance of implementing conservation actions on extensive spatial and temporalscales, with geographically dispersed actions to scientifically evaluate the effects. We note thatpopulation recovery was only seen in regions with a high intensity of management actions.5. Synthesis and applications. The present study demonstrates that carnivore populationdeclines may be reversed through extensive actions that target specific threats. Fennoscandianarctic fox is still endangered, due to low population connectivity and expected climate impactson the distribution and dynamics of lemmings and red foxes. Climate warming is expected tocontribute to both more irregular lemming dynamics and red fox appearance in tundra areas;however, the effects of climate change can be mitigated through intensive managementactions such as supplemental feeding and red fox control
    corecore