355 research outputs found

    Alpha-1 antitrypsin deficiency

    Get PDF
    α-1 antitrypsin is synthesised in the liver and protects lung alveolar tissues from destruction by neutrophil elastase. α-1 antitrypsin deficiency is a common autosomal recessive condition (1:1600 to 1:1800) in which liver disease results from retention of abnormal polymerised α-1 antitrypsin in the endoplasmic reticulum of hepatocytes, and emphysema results from alveolar wall damage. The clinical consequences of α-1 antitrypsin deficiency in childhood are haemorrhagic disease in infancy, cholestasis in infancy, or chronic liver disease. Lung disease attributable to α-1 antitrypsin deficiency does not occur in childhood, but is closely linked to smoking in adults. Membranoproliferative glomerulonephritis, panniculitis, and necrotising vasculitis are associations with α-1 antitrypsin deficiency in adult life

    Effects of golf courses on local biodiversity.

    Get PDF
    There are approximately 2600 golf courses in the UK, occupying 0.7% of the total land cover. However, it is unknown whether these represent a significant resource, in terms of biodiversity conservation, or if they are significantly less diverse than the surrounding habitats. The diversity of vegetation (tree and herbaceous species) and three indicator taxa (birds, ground beetles (Coleoptera, Carabidae) and bumblebees (Hymenoptera, Apidae)) was studied on nine golf courses and nine adjacent habitats (from which the golf course had been created) in Surrey, UK. Two main objectives were addressed: (1) to determine if golf courses support a higher diversity of organisms than the farmland they frequently replace; (2) to examine whether biodiversity increases with the age of the golf course. Birds and both insect taxa showed higher species richness and higher abundance on the golf course habitat than in nearby farmland. While there was no difference in the diversity of herbaceous plant species, courses supported a greater diversity of tree species. Furthermore, bird diversity showed a positive relation with tree diversity for each habitat type. It was found that introduced tree species were more abundant on the older golf courses, showing that attitudes to nature conservation on courses have changed over time. Although the courses studied differed in age by up to 90 years, the age of the course had no effect on diversity, abundance or species richness for any of the animal taxa sampled. We conclude that golf courses of any age can enhance the local biodiversity of an area by providing a greater variety of habitats than intensively managed agricultural areas

    Information Surfing for Radiation Building

    Get PDF
    We develop a control scheme for a group of mobile sensors to map radiation over a given planar polygonal region. The advantage of this methodology is that it provides quick situational awareness regarding radiation levels, which is being updated and refined in real- time as more measurements become available. The control algorithm is based on the concept of information surfing, where navigation is done by following information gradients, taking into account sensing performance and the dynamics of the observed proces

    Plasma formation from ultracold Rydberg gases

    Full text link
    Recent experiments have demonstrated the spontaneous evolution of a gas of ultracold Rydberg atoms into an expanding ultracold plasma, as well as the reverse process of plasma recombination into highly excited atomic states. Treating the evolution of the plasma on the basis of kinetic equations, while ionization/excitation and recombination are incorporated using rate equations, we have investigated theoretically the Rydberg-to-plasma transition. Including the influence of spatial correlations on the plasma dynamics in an approximate way we find that ionic correlations change the results only quantitatively but not qualitatively

    Periodic orbit effects on conductance peak heights in a chaotic quantum dot

    Full text link
    We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as relative to the symmetry lines, can have large effects on the moments and on the head and tail of the conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust, depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure

    Dynamics of liquid He-4 in confined geometries from Time-Dependent Density Functional calculations

    Full text link
    We present numerical results obtained from Time-Dependent Density Functional calculations of the dynamics of liquid He-4 in different environments characterized by geometrical confinement. The time-dependent density profile and velocity field of He-4 are obtained by means of direct numerical integration of the non-linear Schrodinger equation associated with a phenomenological energy functional which describes accurately both the static and dynamic properties of bulk liquid He-4. Our implementation allows for a general solution in 3-D (i.e. no symmetries are assumed in order to simplify the calculations). We apply our method to study the real-time dynamics of pure and alkali-doped clusters, of a monolayer film on a weakly attractive surface and a nano-droplet spreading on a solid surface.Comment: q 1 tex file + 9 Ps figure

    A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory

    Full text link
    As photodisintegration of deuterons mimics the disintegration of deuterons by neutrinos, the accurate measurement of the radioactivity from thorium and uranium decay chains in the heavy water in the Sudbury Neutrino Observatory (SNO) is essential for the determination of the total solar neutrino flux. A radium assay technique of the required sensitivity is described that uses hydrous titanium oxide adsorbent on a filtration membrane together with a beta-alpha delayed coincidence counting system. For a 200 tonne assay the detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and light water carried out during the first two years of data collection of SNO are presented.Comment: 12 pages, 4 figure

    Distribution of resonances for open quantum maps

    Get PDF
    We analyze simple models of classical chaotic open systems and of their quantizations (open quantum maps on the torus). Our models are similar to models recently studied in atomic and mesoscopic physics. They provide a numerical confirmation of the fractal Weyl law for the density of quantum resonances of such systems. The exponent in that law is related to the dimension of the classical repeller (or trapped set) of the system. In a simplified model, a rigorous argument gives the full resonance spectrum, which satisfies the fractal Weyl law. For this model, we can also compute a quantity characterizing the fluctuations of conductance through the system, namely the shot noise power: the value we obtain is close to the prediction of random matrix theory.Comment: 60 pages, no figures (numerical results are shown in other references

    Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x

    Full text link
    The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule is obeyed in both materials. However, the energy scale \omega_c required to recover the full strength of the superfluid \rho_s in the two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for \rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2\Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure

    Structural response of Caribbean dry forests to hurricane winds: a case study from Guanica Forest, Puerto Rico

    Get PDF
    Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Methods: Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results: Direct effects of the hurricane were minimal, with stem mortality at \u3c 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high . over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (\u3e 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main Conclusions: Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi-stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short-term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds
    corecore