We study the effects of short-time classical dynamics on the distribution of
Coulomb blockade peak heights in a chaotic quantum dot. The location of one or
both leads relative to the short unstable orbits, as well as relative to the
symmetry lines, can have large effects on the moments and on the head and tail
of the conductance distribution. We study these effects analytically as a
function of the stability exponent of the orbits involved, and also numerically
using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and
consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure