157 research outputs found

    The stimulating role of syringic acid, a plant secondary metabolite, in the microbial degradation of structurally-related herbicide, MCPA

    Get PDF
    The ability of microorganisms to degrade xenobiotics can be exploited to develop cost-effective and eco-friendly bioremediation technologies. Microorganisms can degrade almost all organic pollutants, but this process might be very slow in some cases. A promising way to enhance removal of recalcitrant xenobiotics from the environment lies in the interactions between plant exudates such as plant secondary metabolites (PSMs) and microorganisms. Although there is a considerable body of evidence that PSMs can alter the microbial community composition and stimulate the microbial degradation of xenobiotics, their mechanisms of action remain poorly understood. With this in mind, our aim was to demonstrate that similarity between the chemical structures of PSMs and xenobiotics results in higher micropollutant degradation rates, and the occurrence of corresponding bacterial degradative genes. To verify this, the present study analyses the influence of syringic acid, a plant secondary metabolite, on the bacterial degradation of an herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA). In particular, the presence of appropriate MCPA degradative genes, MCPA removal efficiency and changes in samples phytotoxicity have been analyzed. Significant MCPA depletion was achieved in samples enriched with syringic acid. The results confirmed not only greater MCPA removal from the samples upon spiking with syringic acid, and thus decreased phytotoxicity, but also the presence of a greater number of genes responsible for MCPA biodegradation. 16S rRNA gene sequence analysis revealed ubiquitous enrichment of the β-proteobacteria Rhodoferax, Achromobacter, Burkholderia and Cupriavidus. The obtained results provide further confirmation that plant metabolites released into the rhizosphere can stimulate biodegradation of xenobiotics, including MCPA

    The concentration of kynurenine in rat model of asthma.

    Get PDF
    Asthma is a chronic inflammatory disease that involves the immune system activation. Evidence is accumulating about the role of kynurenine pathway in the immune system regulation. The kynurenine pathway includes several metabolites of tryptophan, among others kynurenine (KYN). To study the immunological system regulation in asthma a simple and sensitive models of asthma are required. In the present study we induced rat model of asthma using ovalbumin (OVA) sensitization followed by challenge with OVA. The development of asthma has been confirmed by plasma total IgE measurement and the histological examination. The concentration of KYN has been determined in plasma, lungs and liver by high-performance liquid chromatography (HPLC). In OVA sensitized rats the concentration of total IgE was statistically significantly increased as compared to VEH sensitized control groups (437.6 +/- 97.7 kU/l vs 159.2 +/- 22.7 kU/l, respectively; p< 0.01). In asthmatic animals, the number of eosinophils, neutrophils and mast cells increased considerably, and epithelial lesion and the increase in airway epithelium goblet cells and edema of bronchial mucosa were present. We did not observe any significant changes in the concentration of KYN in plasma, lungs or liver between studied groups. In conclusion, the concentration of KYN remains unchanged in asthmatic animals as compared to control groups. Further studies using rat model of asthma are warranted to establish the role of kynurenine pathway regulation in asthma

    Exploring the mechanism of tryptophan 2,3-dioxygenase

    Get PDF
    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes

    Raman spectroscopy can discriminate between normal, dysplastic and cancerous oral mucosa: a tissue-engineering approach.

    Get PDF
    Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Squamous cell carcinoma, the primary cause of HNC, evolves from normal epithelium through dysplasia before invading the connective tissue to form a carcinoma. However, less than 18% of suspicious oral lesions progress to cancer, with diagnosis currently relying on histopathological evaluation, which is invasive and time consuming. A non-invasive, real-time, point-of-care method could overcome these problems and facilitate regular screening. Raman spectroscopy is a non-invasive optical technique with the ability to extract molecular level information to help determine the functional groups present in a tissue and the molecular conformations of tissue constituents. In the present study, Raman spectroscopy was assessed for its ability to discriminate between normal, dysplastic and HNC. Tissue engineered models of normal, dysplastic and HNC were constructed using normal oral keratinocytes, dysplastic and HNC cell lines, and their biochemical content predicted by interpretation of spectral characteristics. Spectral differences were evident in both the fingerprint (600/cm to 1800/cm) and high wave-number compartments (2800/cm to 3400/cm). Visible differences were seen in peaks relating to lipid content (2881/cm), protein structure (amide I, amide III), several amino acids and nucleic acids (600/cm to 1003/cm). Multivariate data analysis algorithms successfully identified subtypes of dysplasia and cancer, suggesting that Raman spectroscopy not only has the potential to differentiate between normal, pre-malignant and cancerous tissue models but could also be sensitive enough to detect subtypes of dysplasia or cancer on the basis of their subcellular differences. Copyright © 2016 John Wiley & Sons, Ltd

    Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    Get PDF
    Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper

    Determination of Selected Priority Pesticides in High Water Fruits and Vegetables by Modified QuEChERS and GC-ECD with GC-MS/MS Confirmation

    No full text
    A modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) method coupled to gas chromatography with electron capture detector (GC-ECD) was developed for simultaneous determination of selected electronegative pesticides in fruits and vegetables with high water content. The chosen compounds are commonly detected in fruit and vegetable crops, and some of their metabolites have even been found in human urine. In addition, some of them are known or suspected carcinogens according to the International Agency for Research of Cancer. Extraction and clean up parameters were optimized, thus the original QuEChERS method was modified to decrease solvent usage, in accordance with &#8216;green chemistry&#8217; principles. The proposed methodology was validated in terms of selectivity, specificity, linearity, precision and accuracy. The obtained limits of detection (LODs) for all investigated pesticides ranged from 5.6 &#181;g&#183;kg&#8722;1 to 15 &#181;g&#183;kg&#8722;1 and limits of quantification (LOQs) from 17 &#181;g&#183;kg&#8722;1 to 45 &#181;g&#183;kg&#8722;1. The obtained data demonstrated the good reproducibility and stability of the procedure in the tested concentration range up to 10 mg&#183;kg&#8722;1, with relative standard deviations (RSDs) lower than 10%. Recoveries for spiked pear samples at LOQ level for each pesticide were from 90% to 107% with RSDs lower than 9.6%. The suitability of the developed procedure was tested on various fruit and vegetable samples available on the market at different seasons. The proposed methodology is applicable for detection and monitoring of selected pesticides not only in fruits and vegetables with high water content, but also in samples containing large amounts of pigments and dyes

    Application of the nanoindentation technique for the characterization of varved clay

    No full text
    Nanoindentation is a test carried out in a small scale, during which a rigid indenter (of known hardness and geometry) is pressed into the tested material. The results of the test are the load and unload curves, from which the harerial characterized by high heterogeneity (like soil – composed of grains and particles of different size and mineral composition), the use of multiple nanoindentation on a predefined grid (Grid Indentation Technique) is reasonable. It allows for the determination of the morphology of the material in a selected scale of observation. In the study, nanoindetation tests were performed on samples of varved clay - soil composed of two alternately arranged layers - occurring near the city of Bełchatów in central Poland. Due to the layered structure of the material, the tests were carried out for both layers separately. The outcomes show that there are significant differences in the values of their mechanical properties. Application of the deconvolution technique also allowed for the estimation of the number of components of both layers and their mechanical properties
    corecore