61 research outputs found
A Mock Data Challenge for the Einstein Gravitational-Wave Telescope
Einstein Telescope (ET) is conceived to be a third generation
gravitational-wave observatory. Its amplitude sensitivity would be a factor ten
better than advanced LIGO and Virgo and it could also extend the low-frequency
sensitivity down to 1--3 Hz, compared to the 10--20 Hz of advanced detectors.
Such an observatory will have the potential to observe a variety of different
GW sources, including compact binary systems at cosmological distances. ET's
expected reach for binary neutron star (BNS) coalescences is out to redshift
and the rate of detectable BNS coalescences could be as high as one
every few tens or hundreds of seconds, each lasting up to several days. %in the
sensitive frequency band of ET. With such a signal-rich environment, a key
question in data analysis is whether overlapping signals can be discriminated.
In this paper we simulate the GW signals from a cosmological population of BNS
and ask the following questions: Does this population create a confusion
background that limits ET's ability to detect foreground sources? How efficient
are current algorithms in discriminating overlapping BNS signals? Is it
possible to discern the presence of a population of signals in the data by
cross-correlating data from different detectors in the ET observatory? We find
that algorithms currently used to analyze LIGO and Virgo data are already
powerful enough to detect the sources expected in ET, but new algorithms are
required to fully exploit ET data.Comment: accepted for publication in Physical Review D -- 18 pages, 8 figure
Glycoside hydrolases for extraction and modification of polyphenolic antioxidants
Antioxidants are important molecules that are widely used by humans, both as dietary supplements and as additives to different types of products. In this chapter, we review how flavonoids, a class of polyphenolic antioxidants that are often found in glycosylated forms in many natural resources, can be extracted and modified using glycoside hydrolases (GHs). Glycosylation is a fundamental enzymatic process in nature, affecting function of many types of molecules (glycans, proteins, lipids as well as other organic molecules such as the flavonoids). Possibilities to control glycosylation thus mean possibilities to control or modify the function of the molecule. For the flavonoids, glycosylation affect both the antioxidative power and solubility. In this chapter we overview results on in vitro deglycosylation and glycosylation of flavonoids by selected GHs. For optimal enzymatic performance, desired features include a correct specificity for the target, combined with high stability. Poor specificity towards a specific substituent is thus a major drawback for enzymes in particular applications. Efforts to develop the enzymes as conversion tools are reviewed
Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species
Six glycoside hydrolase (GH) family 13 members, classified under the polyspecific neopullulanase subfamily GH13_20 (also termed cyclomaltodextrinase) were analysed. They originate from thermophilic bacterial strains (Anoxybacillus flavithermus, Laceyella sacchari, and Geobacillus thermoleovorans) or from environmental DNA, collected after in situ enrichments in Icelandic hot springs. The genes were isolated following the CODEHOP consensus primer strategy, utilizing the first two of the four conserved sequence regions in GH13. The typical domain structure of GH13_20, including an N-terminal domain (classified as CBM34), the catalytic module composed of the A-and B-domains, and a C-terminal domain, was found in five of the encoded enzymes (abbreviated Amy1, 89, 92, 98 and 132). These five enzymes degraded cyclomaltodextrins (CDs) and starch, while only three, Amy92 (L. sacchari), Amy98 (A. flavithermus) and Amy132 (environmental DNA), also harboured neopullulanase activity. The L. sacchari enzyme was monomeric, but with CD as the preferred substrate, which is an unusual combination. The sixth enzyme (Amy29 from environmental DNA), was composed of the ABC-domains only. Preferred substrate for Amy29 was pullulan, which was degraded to panose, and the enzyme had no detectable activity on CDs. In addition to its different activity profile and domain composition, Amy29 also displayed a different conservation (LPKF) in the fifth conserved region (MPKL) proposed to identify the subfamily. All enzymes had apparent temperature optima in the range 50–65°C, while thermostability varied, and was highest for Amy29 with a half-life of 480 min at 80°C. Calcium dependent activity or stability was monitored in four enzymes, but could not be detected for Amy29 or 98. Tightly bound calcium can, however, not be ruled out, and putative calcium ligands were conserved in Amy98
Explorando horizontes sustentáveis: um olhar sobre as energias renováveis
It is seen that, in recent years, Planet Earth has been suffering from climate change. What can also be observed are consequences, sometimes caused by the widespread use of non-renewable energies, which, in addition to being conditioned to their depletion due to gradual scarcity, also end up compromising the future of the next generations. In this way, the present study sought to analyze the students' perception in relation to renewable energy; if your decisions are of a sustainable/social nature and if the choice for this solution is correlated with financial issues. This objective was achieved through applied, quantitative, descriptive, survey-type research. The approach was bibliographic and field, with a cross-section, and was restricted to the group of students from the Technology in Management Processes course at the Federal Institute of Rio Grande do Sul, Farroupilha RS campus. The research showed that students understand the differences between renewable and non-renewable energy. Furthermore, it highlighted the awareness of those interviewed regarding the impacts if there are no changes to clean energy sources. Furthermore, those surveyed would invest in renewable energy generation even if with a long-term return, but understand the importance of greater investment and government incentives.É visto que, nos últimos anos, o Planeta Terra vem sofrendo com mudanças climáticas. O que se observa também, são consequências, por vezes, causadas pelo amplo uso de energias não renováveis, as quais além de estarem condicionadas ao seu esgotamento pela gradativa escassez, também acabam por comprometer o futuro das próximas gerações. Desta forma, o presente estudo buscou analisar a percepção dos discentes em relação às energias renováveis; se suas decisões são de cunho sustentável/social e se a escolha por esta solução tem correlação com questões financeiras. O cumprimento de tal objetivo se deu por meio de uma pesquisa de natureza aplicada, quantitativa, descritiva, do tipo survey. A abordagem foi bibliográfica e de campo, com corte transversal, e se restringiu ao grupo de estudantes do curso de Tecnologia em Processos Gerenciais do Instituto Federal do Rio Grande do Sul, campus Farroupilha RS. A pesquisa apontou que os estudantes têm entendimento a respeito das diferenças entre energias renováveis e não renováveis. Ainda, apontou a consciência dos entrevistados quanto aos impactos se não houver mudanças para fontes de energia limpa. Além disso, que os pesquisados investiriam em geração de energias renováveis mesmo que com retorno a longo prazo, mas que entendem a importância de maior investimento e incentivos governamentais
Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis
Background: The thermostable beta-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e. g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-beta-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on beta-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as T-m by differential scanning calorimetry (101.9 degrees C for wt), was kept in the mutated variants and significant decrease (Delta T of 5 -10 degrees C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in K-M and turnover. The K-M-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 x increase for pNPGlc, while the K-M decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 x in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 x compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in K-M for this substrate. Conclusion: These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both K-M and turnover. An affinity change, leading to a decreased K-M, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site
Firefly Luciferase Mutant with Enhanced Activity and Thermostability
The luciferase isolated from the firefly Photinus pyralis (Ppy) catalyzes a two-step reaction that results in the oxidation of d-luciferin accompanied by emission of yellow-green light with a peak at 560 nm. Among many applications, Ppy luciferase has been used extensively as a reporter gene in living cells and organisms. However, some biological applications are limited by the low stability of the luciferase and limited intracellular luciferin concentration. To address these challenges, efforts to protein engineer Ppy luciferase have resulted in a number of mutants with improved properties such as thermostability, pH tolerance, and catalytic turn over. In this work, we combined amino acid mutations that were shown to enhance the enzyme\u27s thermostability (Mutant E) with those reported to enhance catalytic activity (LGR). The resulting mutant (YY5) contained eight amino acid changes from the wild-type luciferase and exhibited both improved thermostability and brighter luminescence at low luciferin concentrations. Therefore, YY5 may be useful for reporter gene applications
QUALIDADE DE VIDA NO TRABALHO SOB A LUZ DO MODELO DE WALTON
Este estudo tem como principal objetivo analisar a Qualidade de Vida no Trabalho (QVT) dos colaboradores de um estabelecimento no qual está instalada uma pet shop e clínica veterinária, a partir do modelo de QVT de Walton. Para tanto, a pesquisa foi realizada através da abordagem descritiva-exploratória, que buscou identificar entre as oito dimensões propostas por Walton (1973) o nível de satisfação, quais os fatores de maior relevância, além de propor ações que melhorem a QVT dos funcionários, se necessário.Para a coleta de dados, o instrumento utilizado foi um questionário estruturado, que permitiu a análise quanti-qualitativa. Os resultados mostraram que os colaboradores, em geral, manifestaram estar satisfeitos com sua Qualidade de Vida no Trabalho, tendo sido identificados pontos de oportunidade, que tiveram ações sugeridas a fim de melhorar o índice de satisfação nas variáveis em questão
Environmental Tobacco Smoke During the Early Postnatal Period of Mice Interferes With Brain 18 F-FDG Uptake From Infancy to Early Adulthood – A Longitudinal Study
Exposure to environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in childhood. Our aim was to evaluate the effects of postnatal ETS exposure in the brain 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) uptake of mice by positron emission tomography (PET) neuroimaging in a longitudinal study. C57BL/6J mice were exposed to ETS that was generated from 3R4F cigarettes from postnatal day 3 (P3) to P14. PET analyses were performed in male and female mice during infancy (P15), adolescence (P35), and adulthood (P65). We observed that ETS exposure decreased 18F-FDG uptake in the whole brain, both left and right hemispheres, and frontal cortex in both male and female infant mice, while female infant mice exposed to ETS showed decreased 18F-FDG uptake in the cerebellum. In addition, all mice showed reduced 18F-FDG uptake in infancy, compared to adulthood in all analyzed VOIs. In adulthood, ETS exposure during the early postnatal period decreased brain 18F-FDG uptake in adult male mice in the cortex, striatum, hippocampus, cingulate cortex, and thalamus when compared to control group. ETS induced an increase in 18F-FDG uptake in adult female mice when compared to control group in the brainstem and cingulate cortex. Moreover, male ETS-exposed animals showed decreased 18F-FDG uptake when compared to female ETS-exposed in the whole brain, brainstem, cortex, left amygdala, striatum, hippocampus, cingulate cortex, basal forebrain and septum, thalamus, hypothalamus, and midbrain. The present study shows that several brain regions are vulnerable to ETS exposure during the early postnatal period and these effects on 18F-FDG uptake are observed even a long time after the last exposure. This study corroborates our previous findings, strengthening the idea that exposure to tobacco smoke in a critical period interferes with brain development of mice from late infancy to early adulthood
Impacto da disfunção renal na evolução intra-hospitalar após cirurgia de revascularização miocárdica
- …
