84 research outputs found

    Developmental dyscalculia and low numeracy in Chinese children

    Get PDF
    Children struggle with mathematics for different reasons. Developmental dyscalculia and low numeracy - two kinds of mathematical difficulties - may have their roots, respectively, in poor understanding of exact non-symbolic numerosities and of symbolic numerals. This study was the first to explore whether Chinese children, despite cultural and linguistic factors supporting their mathematical learning, also showed such mathematical difficulties and whether such difficulties have measurable impact on children's early school mathematical performance. First-graders, classified as dyscalculia, low numeracy, or normal achievement, were compared for their performance in various school mathematical tasks requiring a grasp of non-symbolic numerosities (i.e., non-symbolic tasks) or an understanding of symbolic numerals (i.e., symbolic tasks). Children with dyscalculia showed poorer performance than their peers in non-symbolic tasks but not symbolic ones, whereas those with low numeracy showed poorer performance in symbolic tasks but not non-symbolic ones. As hypothesized, these findings suggested that dyscalculia and low numeracy were distinct deficits and caused by deficits in non-symbolic and symbolic processing, respectively. These findings went beyond prior research that only documented generally low mathematical achievements for these two groups of children. Moreover, these deficits appeared to be persistent and could not be remedied simply through day-to-day school mathematical learning. The present findings highlighted the importance of tailoring early learning support for children with these distinct deficits, and pointed to future directions for the screening of such mathematical difficulties among Chinese children. © 2013 Elsevier Ltd.postprin

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 103.3–105.5 rad m−2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 105 rad m−2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 105 rad m−2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 105 rad m−2 at 3 mm and −4.1 to 1.5 × 105 rad m−2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Digital PLL-based adaptive repetitive control

    Get PDF
    The repetitive control achieves zero steady state error by reducing it in iterations based on the error observed in pervious iterations. However, the repetitive control requires that an integer number of samples of the input periodic signal are taken and this could be a problem when the reference period is changing and the sampling rate is fixed. The digital PLL-based adaptive repetitive control is proposed in this paper, where the sampling rate is locked to the reference period so that an integer number of samples per period are maintained at all times

    Descriptive statistics of all behavioral tasks.

    No full text
    <p><b>Note:</b> The <i>p</i>-value represents the significance of group differences between experts and novices of FAM and LKM using independent-samples <i>t</i>-tests. (a–b): For the CPT, commission errors were measured as the percentage of trials that participants still responded on when the target stimulus was not present. Omission errors were measured as the percentage of trials that participants did not respond on when the target stimulus was present. Reaction time (RT) is the amount of time that participants took to press the button after the presentation of target stimulus (for trials that they should respond to and did respond). The variability of RT was measured by its standard deviation. Only the omission errors of FAM experts were significantly fewer than those of FAM novices in both meditation and baseline states (*<i>p</i><.05, two-tailed). (c): Ratings of valence and arousal of happy and sad pictures adopted from the International Affective Picture System (IAPS). (d): Positive and negative affect were measured by the Chinese Affect Scale. Only the negative affect of LKM experts was significantly lower than that of LKM novices (**<i>p</i><.01, two-tailed).</p
    • 

    corecore