315 research outputs found

    Probing the sp^2 dependence of elastic moduli in ultrahard diamond films

    Full text link
    The structural and elastic properties of diamond nanocomposites and ultrananocrystalline diamond films (UNCD) are investigated using both empirical potentials and tight binding schemes. We find that both materials are extremely hard, but their superb diamondlike properties are limited by their sp^2 component. In diamond composites, the sp^2 atoms are found in the matrix and far from the interface with the inclusion, and they are responsible for the softening of the material. In UNCD, the sp^2 atoms are located in the grain boundaries. They offer relaxation mechanisms which relieve the strain but, on the other hand, impose deformations that lead to softening. The higher the sp^2 component the less rigid these materials are.Comment: 10 pages, 3 figures. to appear in Diamond and Relarted Material

    Chinese food security and climate change: Agriculture futures

    Get PDF
    Climate change is now affecting agriculture and food production in every country of the world. Here the authors present the IMPACT model results on yield, production, and net trade of major crops in China, and on daily calorie availability as an overall indicator of food security under climate change scenarios and socio-economic pathways in 2050. The obtained results show a relatively optimistic outlook on yield, production and trade toward 2050. The outcomes of calorie availability suggest that China will be able to maintain a level of at least 3,000 kilocalories per day through 2010 to 2050. Overall, Chinese agriculture is relatively resilient to climate change. It is unlikely that Chinese food security by 2050 will be compromised in the context of climate change. The major challenge to food security, however, will rise from increasing demand coupled with regional disparities in adaptive capacity to climate change

    Microscopic theory of atom-molecule oscillations in a Bose-Einstein condensate

    Full text link
    In a recent experiment at JILA [E.A. Donley et al., Nature (London) 417, 529 (2002)] an initially pure condensate of Rb-85 atoms was exposed to a specially designed time dependent magnetic field pulse in the vicinity of a Feshbach resonance. The production of new components of the gas as well as their oscillatory behavior have been reported. We apply a microscopic theory of the gas to identify these components and determine their physical properties. Our time dependent studies allow us to explain the observed dynamic evolution of all fractions, and to identify the physical relevance of the pulse shape. Based on ab initio predictions, our theory strongly supports the view that the experiments have produced a molecular condensate.Comment: 18 pages, 20 figure

    Linear and Second-order Optical Response of the III-V Mono-layer Superlattices

    Full text link
    We report the first fully self-consistent calculations of the nonlinear optical properties of superlattices. The materials investigated are mono-layer superlattices with GaP grown on the the top of InP, AlP and GaAs (110) substrates. We use the full-potential linearized augmented plane wave method within the generalized gradient approximation to obtain the frequency dependent dielectric tensor and the second-harmonic-generation susceptibility. The effect of lattice relaxations on the linear optical properties are studied. Our calculations show that the major anisotropy in the optical properties is the result of strain in GaP. This anisotropy is maximum for the superlattice with maximum lattice mismatch between the constituent materials. In order to differentiate the superlattice features from the bulk-like transitions an improvement over the existing effective medium model is proposed. The superlattice features are found to be more pronounced for the second-order than the linear optical response indicating the need for full supercell calculations in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.

    Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis

    Get PDF
    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes’ couple stress fluid model is deployed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing couple stress parameter there is a significant elevation in axial pressure gradient whereas the core axial velocity is reduced. An increase in electro-osmotic parameter induces both flow acceleration in the core region (around the channel centreline) and also enhances axial pressure gradient substantially. The study is relevant to simulation of novel smart bio-inspired space pumps, chromatography and medical microscale devices

    Nonperturbative renormalization group approach to frustrated magnets

    Full text link
    This article is devoted to the study of the critical properties of classical XY and Heisenberg frustrated magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the unusual behaviors encountered in these systems, typically nonuniversal scaling, are hardly compatible with the hypothesis of a second order phase transition. We then review the various perturbative and early nonperturbative approaches used to investigate these systems. We argue that none of them provides a completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of the nonperturbative approach - the effective average action method - that we have used to investigate the physics of frustrated magnets. First, we recall the treatment of the unfrustrated - O(N) - case with this method. This allows to introduce its technical aspects. Then, we show how this method unables to clarify most of the problems encountered in the previous theoretical descriptions of frustrated magnets. Firstly, we get an explanation of the long-standing mismatch between different perturbative approaches which consists in a nonperturbative mechanism of annihilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics of frustrated magnets in qualitative and (semi-) quantitative agreement with the numerical and experimental results. The central feature that emerges from our approach is the existence of scaling behaviors without fixed or pseudo-fixed point and that relies on a slowing-down of the renormalization group flow in a whole region in the coupling constants space. This phenomenon allows to explain the occurence of generic weak first order behaviors and to understand the absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    Temporal structure of stimulated-Brillouin-scattering reflectivity considering transversal-mode development

    Get PDF
    The time-resolved reflectivity of optical phase conjugation by stimulated Brillouin scattering ~SBS! is investigated both theoretically and experimentally. A three-dimensional and transient model of SBS is developed to compare the experimental and theoretical results. Noise initiation of the SBS process is included in the model to simulate the shot-to-shot variation in the reflectivity and the Stokes temporal profile.Shahraam Afshaarvahid, Axel Heuer, Ralf Menzel, and Jesper Munc
    corecore