1,577 research outputs found
Theory of tunneling spectroscopy for chiral topological superconductors
We study the charge conductance of an interface between a normal metal and a
superconducting quantum anomalous Hall system, based on the recursive Green's
function. The angle resolved conductance gamma(ky, eV) with the momentum ky
parallel to the interface and the bias voltage V shows a rich structure
depending on the Chern number N of the system. We find that when the bias
voltage is tuned to the energy dispersion of the edge mode, eV = Eedge(ky), the
angle resolved conductance gamma(ky,Eedge(ky)) shows a pronounced even-odd
effect; the conductance vanishes for N = 0 or 2 while it takes a universal
value 2e^2/h for N = 1. In particular, in N = 2 phase, we find that the
conductance gamma(ky,Eedge(ky)) becomes zero due to interference of two
degenerate Majorana edge modes, although the corresponding surface spectral
weight remains non-zero.Comment: 10 pages, 10 figure
Phenomenological bounds in inclusive neutrino interactions
Using expressions for the and anti charged and neutral current cross sections and the electroproduction structure function integral and positivity requirements of the sea contribution, bounds are obtained on sigma/sup anti nu N//sigma/sup anti nu N/, and sigma/sup anti nu N//sub nc//sigma/sup nu N/ /sub nc/ in the standard model. A bound on sigma/sup anti nu N//sigma/sup nu N/ obtained with a V + A term anti p'/sub mu/(1-)n is used to rule out such a term in the current. A plot of sigma/sup nu N//sub nc/ + sigma/ sup anti nu N//sub nc/ versus sigma/sup nu N//sub nc/ - sigma/sup anti nu N//sub nc/ is introduced to analyze the neutral current data. A new relation connecting moments of y and y distributions at a particular point y/sub n/ for and anti interactions is found. The results do not depend on the neutral current data. (auth
Tensile bond strength and SEM analysis of enamel etched with Er:YAG laser and phosphoric acid: a comparative study In vitro
Er:YAG laser has been studied as a potential tool for restorative dentistry due to its ability to selectively remove oral hard tissue with minimal or no thermal damage to the surrounding tissues. The purpose of this study was to evaluate in vitro the tensile bond strength (TBS) of an adhesive/composite resin system to human enamel surfaces treated with 37% phosphoric acid, Er:YAG laser (lambda=2.94 mum) with a total energy of 16 J (80 mJ/pulse, 2Hz, 200 pulses, 250 ms pulse width), and Er:YAG laser followed by phosphoric acid etching. Analysis of the treated surfaces was performed by scanning electron microscopy (SEM) to assess morphological differences among the groups. TBS means (in MPa) were as follows: Er:YAG laser + acid (11.7 MPa) > acid (8.2 MPa) > Er:YAG laser (6.1 MPa), with the group treated with laser+acid being significantly from the other groups (p=0.0006 and p= 0.00019, respectively). The groups treated with acid alone and laser alone were significantly different from each other (p=0.0003). The SEM analysis revealed morphological changes that corroborate the TBS results, suggesting that the differences in TBS means among the groups are related to the different etching patterns produced by each type of surface treatment. The findings of this study indicate that the association between Er:YAG laser and phosphoric acid can be used as a valuable resource to increase bond strength to laser-prepared enamel.A tecnologia a laser tem sido estudada como uma ferramenta potencial para uso em odontologia devido à sua habilidade em remover tecido ósseo com um mÃnimo ou nenhum dano aos tecidos vizinhos. O objetivo deste estudo é comparar in vitro a resistência à tração do sistema adesivo em esmalte tratado com ácido fosfórico a 37 %, laser Er:YAG (lambda=2,94 mim) com energia total de 16 J (80 mJ/pulso, 2 Hz, 200 pulsos e largura de pulso de 250 ms) e com a combinação laser Er:YAG seguido por ácido fosfórico. O teste de resistência à tração foi usado para comparar a resistência à tração em cada grupo. Foi também realizada microscopia eletrônica de varredura para permitir a análise das diferenças morfológicas entre os grupos. Foram obtidos os seguintes valores médios de resistência para os grupos tratados com: laser (6,1 MPa), ácido fosfórico (8,2 MPa) e laser mais ácido (11,7 Mpa). Amostras tratadas com laser e ácido apresentaram valores maiores de resistência do que amostras com laser ou ácido isoladamente. A análise da microscopia eletrônica revelou diferenças que corroboram os resultados, demonstrando que diferenças de resistência entre os grupos são devidas à s diferenças entre os padrões superficiais resultantes. Nossos resultados sugerem que a combinação do laser Er:YAG com ácido fosfórico pode ser usada como um método para aumentar a resistência à tração do sistema esmalte resina
Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -
Superconductivity is a phenomenon where the macroscopic quantum coherence
appears due to the pairing of electrons. This offers a fascinating arena to
study the physics of broken gauge symmetry. However, the important symmetries
in superconductors are not only the gauge invariance. Especially, the symmetry
properties of the pairing, i.e., the parity and spin-singlet/spin-triplet,
determine the physical properties of the superconducting state. Recently it has
been recognized that there is the important third symmetry of the pair
amplitude, i.e., even or odd parity with respect to the frequency. The
conventional uniform superconducting states correspond to the even-frequency
pairing, but the recent finding is that the odd-frequency pair amplitude arises
in the spatially non-uniform situation quite ubiquitously. Especially, this is
the case in the Andreev bound state (ABS) appearing at the surface/interface of
the sample. The other important recent development is on the nontrivial
topological aspects of superconductors. As the band insulators are classified
by topological indices into (i) conventional insulator, (ii) quantum Hall
insulator, and (iii) topological insulator, also are the gapped
superconductors. The influence of the nontrivial topology of the bulk states
appears as the edge or surface of the sample. In the superconductors, this
leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the
superconductors are the place where the symmetry and topology meet each other
which offer the stage of rich physics. In this review, we discuss the physics
of ABS from the viewpoint of the odd-frequency pairing, the topological
bulk-edge correspondence, and the interplay of these two issues. It is
described how the symmetry of the pairing and topological indices determines
the absence/presence of the ZEABS, its energy dispersion, and properties as the
Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
Carrier-mediated magnetoelectricity in complex oxide heterostructures
While tremendous success has been achieved to date in creating both single
phase and composite magnetoelectric materials, the quintessential
electric-field control of magnetism remains elusive. In this work, we
demonstrate a linear magnetoelectric effect which arises from a novel
carrier-mediated mechanism, and is a universal feature of the interface between
a dielectric and a spin-polarized metal. Using first-principles density
functional calculations, we illustrate this effect at the SrRuO/SrTiO
interface and describe its origin. To formally quantify the magnetic response
of such an interface to an applied electric field, we introduce and define the
concept of spin capacitance. In addition to its magnetoelectric and spin
capacitive behavior, the interface displays a spatial coexistence of magnetism
and dielectric polarization suggesting a route to a new type of interfacial
multiferroic
AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.Peer reviewedProo
Improved Culture-Based Isolation of Differentiating Endothelial Progenitor Cells from Mouse Bone Marrow Mononuclear Cells
Numerous endothelial progenitor cell (EPC)-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs) in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT) cells and floating (FL) cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL) but not fast attached (AT) BMMNCs in culture are EPC-rich population in mouse
Multi-Moment Advection scheme for Vlasov simulations
We present a new numerical scheme for solving the advection equation and its
application to Vlasov simulations. The scheme treats not only point values of a
profile but also its zeroth to second order piecewise moments as dependent
variables, for better conservation of the information entropy. We have
developed one- and two-dimensional schemes and show that they provide quite
accurate solutions within reasonable usage of computational resources compared
to other existing schemes. The two-dimensional scheme can accurately solve the
solid body rotation problem of a gaussian profile for more than hundred
rotation periods with little numerical diffusion. This is crucially important
for Vlasov simulations of magnetized plasmas. Applications of the one- and
two-dimensional schemes to electrostatic and electromagnetic Vlasov simulations
are presented with some benchmark tests.Comment: 52 pages, 18 figures, accepted for the publication in Journal of
Computational Physic
- …