20 research outputs found

    A new quadruple gravitational lens from the Hyper Suprime-Cam Survey: the puzzle of HSC~J115252+004733

    Full text link
    We report the serendipitous discovery of a quadruply lensed source at zs=3.76z_{\rm s}=3.76, HSC~J115252+004733, from the Hyper Suprime-Cam (HSC) Survey. The source is lensed by an early-type galaxy at zl=0.466z_{\rm l}=0.466 and a satellite galaxy. Here, we investigate the properties of the source by studying its size and luminosity from the imaging and the luminosity and velocity width of the Ly-α\alpha line from the spectrum. Our analyses suggest that the source is most probably a low-luminosity active galactic nucleus (LLAGN) but the possibility of it being a compact bright galaxy (e.g., a Lyman-α\alpha emitter or Lyman Break Galaxy) cannot be excluded. The brighter pair of lensed images appears point-like except in the HSC ii-band (with a seeing 0.5"\sim0.5"). The extended emission in the ii-band image could be due to the host galaxy underneath the AGN, or alternatively, due to a highly compact lensed galaxy (without AGN) which appears point-like in all bands except in ii-band. We also find that the flux ratio of the brighter pair of images is different in the Ks-band compared to optical wavelengths. Phenomena such as differential extinction and intrinsic variability cannot explain this chromatic variation. While microlensing from stars in the foreground galaxy is less likely to be the cause, it cannot be ruled out completely. If the galaxy hosts an AGN, then this represents the highest redshift quadruply imaged AGN known to date, enabling study of a distant LLAGN. Discovery of this unusually compact and faint source demonstrates the potential of the HSC survey.Comment: 9 pages, 7 figures, 3 Tables, MNRAS accepted, text reduce

    Hyper-luminous Dust Obscured Galaxies discovered by the Hyper Suprime-Cam on Subaru and WISE

    Full text link
    We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with iKs>1.2i - K_\mathrm{s} > 1.2 and i[22]>7.0i - [22] > 7.0, where ii, KsK_\mathrm{s}, and [22] represent AB magnitude in the ii-band, KsK_\mathrm{s}-band, and 22 μ\mum, respectively, in the GAMA 14hr field (\sim 9 deg2^2). Among these objects, 31 (\sim 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma zz = 1.99 ±\pm 0.45, we calculated their total IR luminosity using an empirical relation between 22 μ\mum luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 ±\pm 1.1) ×\times 101310^{13} L_{\odot}, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 μ\mum flux greater than 3.0 mJy and with ii-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log ϕ\phi = -6.59 ±\pm 0.11 [Mpc3^{-3}]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is ρIR\rho_{\mathrm{IR}} \sim 3.8 ×\times 107^7 [L_{\odot} Mpc3^{-3}] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are >> 3 %, >> 9 %, and >> 15 %, respectively.Comment: 15 pages, 15 figures, and 3 tables, accepted for publication in PASJ (Subaru special issue

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey
    corecore