270 research outputs found

    Versatile spectral imaging with an algorithm-based spectrometer using highly tuneable quantum dot infrared photodetectors

    Get PDF
    We report on the implementation of an algorithm-based spectrometer capable of reconstructing the spectral shape of materials in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) wavelengths using only experimental photocurrent measurements from quantum dot infrared photodetectors (QDIPs). The theory and implementation of the algorithm will be described, followed by an investigation into this algorithmic spectrometer's performance. Compared to the QDIPs utilized in an earlier implementation, the ones used here have highly varying spectral shapes and four spectral peaks across the MWIR and LWIR wavelengths. It has been found that the spectrometer is capable of reconstructing broad spectral features of a range of bandpass infrared filters between wavelengths of 4 and 12 mu m as well as identifying absorption features as narrow as 0.3 mu m in the IR spectrum of a polyethylene sheet

    Constraints on ultracompact minihalos from extragalactic {\gamma}-ray background

    Full text link
    It has been proposed that ultracompact minihalos (UCMHs) might be formed in earlier epoch. If dark matter consists of Weakly Interacting Massive Particles (WIMPs), UCMHs can be treated as the {\gamma}-ray sources due to dark matter annihilation within them. In this paper, we investigate the contributions of UCMHs formed during three phase transi- tions (i.e., electroweak symmetry breaking, QCD confinement and e+ e- annihilation) to the extragalactic {\gamma}-ray background. Moreover, we use the Fermi-LAT observation data of the extragalactic {\gamma}-ray background to get the constraints on the current abundance of UCMHs produced during these phase transitions. We also compare these results with those obtained from Cosmic Microwave Background (CMB) observations and find that the constraints from the Fermi-LAT are more stringent than those from CMBComment: 13 pages, 4 figures, 1 tabl

    Stable Integration of Transgenes Delivered by a Retrotransposon–Adenovirus Hybrid Vector

    Full text link
    Helper-dependent adenoviruses show great promise as gene delivery vectors. However, because they do not integrate into the host chromosome, transgene expression cannot be maintained indefinitely. To overcome these limitations, we have inserted an L1 retrotransposon/transgene element into a helper-dependent adenovirus to create a novel chimeric gene delivery vector. Efficient adenovirus-mediated delivery of the L1 element into cultured human cells results in subsequent retrotransposition and stable integration of the transgene. L1 retrotransposition frequency was found to correlate with increasing multiplicity of infection by the chimeric vector, and further retrotransposition from newly integrated elements was not observed on prolonged culture. Therefore, this vector, which utilizes components of low immunogenic potential, represents a novel two-stage gene delivery system capable of achieving high titers via the initial helper-dependent adenovirus stage and permanent transgene integration via the retrotransposition stage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63154/1/104303401750298571.pd

    Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays

    Get PDF
    Purpose: In this era of precision-based medicine, for optimal patient care, results reported from commercial next-generation sequencing (NGS) assays should adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired Foundation Medicine NGS assays. Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of solid tumors from two large cancer centers. We identified and quantified mutations in genes known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by comparing mutations on Foundation Medicine reports with matched blood sequencing. Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority of TP53 mutations (4%, 2/50) were clonal hematopoiesis. Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation origin when applying NGS findings to a patient's care

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Role of endoscopic ultrasonography in the diagnostic work-up of idiopathic acute pancreatitis (PICUS): study protocol for a nationwide prospective cohort study

    Get PDF
    Introduction Idiopathic acute pancreatitis (IAP) remains a dilemma for physicians as it is uncertain whether patients with IAP may actually have an occult aetiology. It is unclear to what extent additional diagnostic modalities such as endoscopic ultrasonography (EUS) are warranted after a first episode of IAP in order to uncover this aetiology. Failure to timely determine treatable aetiologies delays appropriate treatment and might subsequently cause recurrence of acute pancreatitis. Therefore, the aim of the Pancreatitis of Idiopathic origin: Clinical added value of endoscopic UltraSonography (PICUS) Study is to determine the value of routine EUS in determining the aetiology of pancreatitis in patients with a first episode of IAP. Methods and analysis PICUS is designed as a multicentre prospective cohort study of 106 patients with a first episode of IAP after complete standard diagnostic work-up, in whom a diagnostic EUS will be performed. Standard diagnostic work-up will include a complete personal and family history, laboratory tests including serum alanine aminotransferase, calcium and triglyceride levels and imaging by transabdominal ultrasound, magnetic resonance imaging or magnetic resonance cholangiopancreaticography after clinical recovery from the acute pancreatitis episode. The primary outcome measure is detection of aetiology by EUS. Secondary outcome measures include pancreatitis recurrence rate, severity of recurrent pancreatitis, readmission, additional interventions, complications, length of hospital stay, quality of life, mortality and costs, during a follow-up period of 12 months. Ethics and dissemination PICUS is conducted according to the Declaration of Helsinki and Guideline for Good Clinical Practice. Five medical ethics review committees assessed PICUS (Medical Ethics Review Committee of Academic Medical Center, University Medical Center Utrecht, Radboud University Medical Center, Erasmus Medical Center and Maastricht University Medical Center). The results will be submitted for publication in an international peer-reviewed journal.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    A search for the decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu}

    Get PDF
    We search for the rare flavor-changing neutral-current decay B+K+ννˉB^+ \to K^+ \nu \bar{\nu} in a data sample of 82 fb1^{-1} collected with the {\sl BABAR} detector at the PEP-II B-factory. Signal events are selected by examining the properties of the system recoiling against either a reconstructed hadronic or semileptonic charged-B decay. Using these two independent samples we obtain a combined limit of B(B+K+ννˉ)<5.2×105{\mathcal B}(B^+ \to K^+ \nu \bar{\nu})<5.2 \times 10^{-5} at the 90% confidence level. In addition, by selecting for pions rather than kaons, we obtain a limit of B(B+π+ννˉ)<1.0×104{\mathcal B}(B^+ \to \pi^+ \nu \bar{\nu})<1.0 \times 10^{-4} using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
    corecore