71 research outputs found

    Unique mechanism of target recognition by PfoI restriction endonuclease of the CCGG-family.

    Get PDF
    Restriction endonucleases (REs) of the CCGG-family recognize a set of 4-8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5'-CCNGG flip the central N nucleotides and 'compress' the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5'-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not 'compress' the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences

    The H-subunit of the restriction endonuclease CglI contains a prototype DEAD-Z1 helicase-like motor

    Get PDF
    CglI is a restriction endonuclease from Corynebacterium glutamicum that forms a complex between: two R-subunits that have site specific-recognition and nuclease domains; and two H-subunits, with Superfamily 2 helicase-like DEAD domains, and uncharacterized Z1 and C-terminal domains. ATP hydrolysis by the H-subunits catalyses dsDNA translocation that is necessary for long-range movement along DNA that activates nuclease activity. Here, we provide biochemical and molecular modelling evidence that shows that Z1 has a fold distantly-related to RecA, and that the DEAD-Z1 domains together form an ATP binding interface and are the prototype of a previously undescribed monomeric helicase-like motor. The DEAD-Z1 motor has unusual Walker A and Motif VI sequences those nonetheless have their expected functions. Additionally, it contains DEAD-Z1-specific features: an H/H motif and a loop (aa 163-aa 172), that both play a role in the coupling of ATP hydrolysis to DNA cleavage. We also solved the crystal structure of the C-terminal domain which has a unique fold, and demonstrate that the Z1-C domains are the principal DNA binding interface of the H-subunit. Finally, we use small angle X-ray scattering to provide a model for how the H-subunit domains are arranged in a dimeric complex

    Epidemiology of hip fracture in Belarus: development of a country-specific FRAX model and its comparison to neighboring country models

    Get PDF
    Summary Fracture probabilities resulting from the newly generated FRAX model for Belarus based on regional estimates of the hip fracture incidence were compared with FRAX models of neighboring countries. Differences between the country-specific FRAX patterns and the rank orders of fracture probabilities were modest. Objective This paper describes the epidemiology of hip fractures in Belarus that was used to develop the country-specific fracture prediction FRAX® tool and illustrates its features compared to models for the neighboring countries of Poland, Russia, and Lithuania. Methods We carried out a population-based study in a region of Belarus (the city of Mozyr) representing approximately 1.2% of the country’s population. We aimed to identify all hip fractures in 2011–2012 from hospital registers and primary care sources. Age- and sex-specific incidence and national mortality rates were incorporated into a FRAX model for Belarus. Fracture probabilities were compared with those derived from FRAX models in neighboring countries. Results The estimated number of hip fractures nationwide in persons over the age of 50 years for 2015 was 8250 in 2015 and is predicted to increase to 12,918 in 2050. The annual incidence of fragility hip fractures in individuals aged 50 years or more was 24.6/10,000 for women and 14.6/10,000 for men, standardized to the world population. The comparison with FRAX models in neighboring countries showed that hip fracture probabilities in men and women in Belarus were similar to those in Poland, Russia, and Lithuania. The difference in incidence rates between the surveys including or excluding data from primary care suggested that 29.1% of patients sustaining a hip fracture were not hospitalized and, therefore, did not receive specialized medical care. Conclusion A substantial proportion of hip fractures in Belarus does not come to hospital attention. The FRAX model should enhance accuracy of determining fracture probability among the Belarus population and help guide decisions about treatment

    The structure of SgrAI bound to DNA; recognition of an 8 base pair target

    Get PDF
    The three-dimensional X-ray crystal structure of the ‘rare cutting’ type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca2+ bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn2+, with strong binding at the protein–DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI

    Restriction endonuclease BpuJI specific for the 5′-CCCGT sequence is related to the archaeal Holliday junction resolvase family

    Get PDF
    Type IIS restriction endonucleases (REases) recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. REase BpuJI recognizes the asymmetric sequence 5′-CCCGT, however it cuts at multiple sites in the vicinity of the target sequence. We show that BpuJI is a dimer, which has two DNA binding surfaces and displays optimal catalytic activity when bound to two recognition sites. BpuJI is cleaved by chymotrypsin into an N-terminal domain (NTD), which lacks catalytic activity but binds specifically to the recognition sequence as a monomer, and a C-terminal domain (CTD), which forms a dimer with non-specific nuclease activity. Fold recognition approach reveals that the CTD of BpuJI is structurally related to archaeal Holliday junction resolvases (AHJR). We demonstrate that the isolated catalytic CTD of BpuJI possesses end-directed nuclease activity and preferentially cuts 3 nt from the 3′-terminus of blunt-ended DNA. The nuclease activity of the CTD is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the NTDs. This leads to a complicated pattern of specific DNA cleavage in the vicinity of the target site. Bioinformatics analysis identifies the AHJR-like domain in the putative Type III enzymes and functionally uncharacterized proteins

    Characterization and crystal structure of the type IIG restriction endonuclease RM.BpuSI

    Get PDF
    A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x15-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R–M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status

    Identification of new homologs of PD-(D/E)XK nucleases by support vector machines trained on data derived from profile–profile alignments

    Get PDF
    PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile–profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/

    An experience- and preference-based EQ-5D-3L value set derived using 18 months of longitudinal data in patients who sustained a fracture: results from the ICUROS

    Get PDF
    Introduction EQ-5D-3L preference-based value sets are predominately based on hypothetical health states and derived in cross-sectional settings. Therefore, we derived an experience-based value set from a prospective observational study. Methods The International Costs and Utilities Related to Osteoporotic fractures Study (ICUROS) was a multinational study on fragility fractures, prospectively collecting EQ-5D-3L and Time trade-off (TTO) within two weeks after fracture (including pre-fracture recall), and at 4, 12, and 18 months thereafter. We derived an EQ-5D-3L value set by regressing the TTO values on the ten impairment levels in the EQ-5D-3L. We explored the potential for response shift and whether preferences for domains vary systematically with prior impairment in that domain. Finally, we compared the value set to 25 other EQ-5D-3L preference-based value sets. Results TTO data were available for 12,954 EQ-5D-3L health states in 4683 patients. All coefficients in the value set had the expected sign, were statistically significant, and increased monotonically with severity of impairment. We found evidence for response shift in mobility, self-care, and usual activities. The value set had good agreement with the only other experience- and preference-based value set, but poor agreement with all hypothetical value sets. Conclusions We present an experience- and preference-based value set with high face validity. The study indicates that response shift may be important to account for when deriving value sets. Furthermore, the study suggests that perspective (experienced versus hypothetical) is more important than country setting or demographics for valuation of EQ-5D-3L health states
    corecore