4 research outputs found

    Hydrogen storage properties of Pd-doped thermally oxidized single wall carbon nanohorns.

    No full text
    Single wall carbon nanohorns as well as their thermally oxidized derivatives were decorated with Pd nanoparticles and their H2 sorption performance was examined at 298 K up to 20 bar. The specific surface area of the nanohorns was increased through air oxidation, while both the thermal treatment and the metal doping led to the enhancement of the H2 uptake. The higher uptake of the hybrid materials could not be attributed only to the additive effect of the carbon support and Pd content suggesting the existence of a cooperative mechanism between the metal particles and the carbon surface. This weak chemisorption process was found to be fully reversible after mild heating; still, its contribution to the overall H2 uptake was not found to be of great significance

    Boron Nitride Nanotubes Versus Carbon Nanotubes: A Thermal Stability and Oxidation Behavior Study

    Get PDF
    Nanotubes made of boron nitride (BN) and carbon have attracted considerable attention within the literature due to their unique mechanical, electrical and thermal properties. In this work, BN and carbon nanotubes, exhibiting high purity (>99%) and similar surface areas (~200 m2/g), were systematically investigated for their thermal stability and oxidation behavior by combining thermal gravimetric analysis and differential scanning calorimetry methods at temperatures of up to ~1300 °C under a synthetic air flow environment. The BN nanotubes showed a good resistance to oxidation up to ~900 °C and fully transformed to boron oxide up to ~1100 °C, while the carbon nanotubes were stable up to ~450 °C and almost completely combusted up to ~800 °C. The different oxidation mechanisms are attributed to the different chemical nature of the two types of nanotubes

    Hydrogen storage properties of Pd-doped thermally oxidized single wall carbon nanohorns

    No full text
    Single wall carbon nanohorns as well as their thermally oxidized derivatives were decorated with Pd nanoparticles and their H2 sorption performance was examined at 298 K up to 20 bar. The specific surface area of the nanohorns was increased through air oxidation, while both the thermal treatment and the metal doping led to the enhancement of the H2 uptake. The higher uptake of the hybrid materials could not be attributed only to the additive effect of the carbon support and Pd content suggesting the existence of a cooperative mechanism between the metal particles and the carbon surface. This weak chemisorption process was found to be fully reversible after mild heating; still, its contribution to the overall H2 uptake was not found to be of great significance
    corecore