70 research outputs found

    Supporting self-adaptation via quantitative verification and sensitivity analysis at run time

    Get PDF
    Modern software-intensive systems often interact with an environment whose behavior changes over time, often unpredictably. The occurrence of changes may jeopardize their ability to meet the desired requirements. It is therefore desirable to design software in a way that it can self-adapt to the occurrence of changes with limited, or even without, human intervention. Self-adaptation can be achieved by bringing software models and model checking to run time, to support perpetual automatic reasoning about changes. Once a change is detected, the system itself can predict if requirements violations may occur and enable appropriate counter-actions. However, existing mainstream model checking techniques and tools were not conceived for run-time usage; hence they hardly meet the constraints imposed by on-the-fly analysis in terms of execution time and memory usage. This paper addresses this issue and focuses on perpetual satisfaction of non-functional requirements, such as reliability or energy consumption. Its main contribution is the description of a mathematical framework for run-time efficient probabilistic model checking. Our approach statically generates a set of verification conditions that can be efficiently evaluated at run time as soon as changes occur. The proposed approach also supports sensitivity analysis, which enables reasoning about the effects of changes and can drive effective adaptation strategies

    Run-time efficient probabilistic model checking

    No full text
    Since the inception of discontinuous Galerkin (DG) methods for elliptic problems, there has existed a question of whether DG methods can be made more computationally efficient than continuous Galerkin (CG) methods. Fewer degrees of freedom, approximation properties for elliptic problems together with the number of optimization techniques, such as static condensation, available within CG framework made it challenging for DG methods to be competitive until recently. However, with the introduction of a static-condensation-amenable DG method—the hybridizable discontinuous Galerkin (HDG) method—it has become possible to perform a realistic comparison of CG and HDG methods when applied to elliptic problems. In this work, we extend upon an earlier 2D comparative study, providing numerical results and discussion of the CG and HDG method performance in three dimensions. The comparison categories covered include steady-state elliptic and time-dependent parabolic problems, various element types and serial and parallel performance. The postprocessing technique, which allows for superconvergence in the HDG case, is also discussed. Depending on the direct linear system solver used and the type of the problem (steady-state vs. time-dependent) in question the HDG method either outperforms or demonstrates a comparable performance when compared with the CG method. The HDG method however falls behind performance-wise when the iterative solver is used, which indicates the need for an effective preconditioning strategy for the method

    Quantification of Optic Disc Edema during Exposure to High Altitude Shows No Correlation to Acute Mountain Sickness

    Get PDF
    BACKGROUND: The study aimed to quantify changes of the optic nerve head (ONH) during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS). This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. METHODOLOGY/PRINCIPAL FINDINGS: A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3®) was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 m). Slitlamp biomicroscopy was used for clinical optic disc evaluation; AMS was assessed with Lake Louise (LL) and AMS-cerebral (AMS-c) scores; oxygen saturation (SpO₂) and heart rate (HR) were monitored. These parameters were used to correlate with changes at the ONH. After the first night spent at high altitude, incidence of AMS was 55% and presence of clinical optic disc edema (ODE) 79%. Key stereometric parameters of the HRT3® used to describe ODE (mean retinal nerve fiber layer [RNFL] thickness, RNFL cross sectional area, optic disc rim volume and maximum contour elevation) changed significantly at high altitude compared to baseline (p<0.05) and were consistent with clinically described ODE. All changes were reversible in all participants after descent. There was no significant correlation between parameters of ODE and AMS, SpO₂ or HR. CONCLUSIONS/SIGNIFICANCE: Exposure to high altitude leads to reversible ODE in the majority of healthy subjects. However, these changes did not correlate with AMS or basic physiologic parameters such as SpO₂ and HR. For the first time, a quantitative approach has been used to assess these changes during acute, non-acclimatized high altitude exposure. In conclusion, ODE presents a reaction of the body to high altitude exposure unrelated to AMS

    ZBTB12 DNA methylation is associated with coagulation- and inflammation-related blood cell parameters: findings from the Moli-family cohort.

    Get PDF
    Background Zinc finger and BTB domain-containing protein 12 (ZBTB12) is a predicted transcription factor with potential role in hematopoietic development. Recent evidence linked low methylation level of ZBTB12 exon1 to myocardial infarction (MI) risk. However, the role of ZBTB12 in the pathogenesis of MI and cardiovascular disease in general is not yet clarified. We investigated the relation between ZBTB12 methylation and several blood parameters related to cardio-cerebrovascular risk in an Italian family-based cohort. Results ZBTB12 methylation was analyzed on white blood cells from the Moli-family cohort using the Sequenom EpiTYPER MassARRAY (Agena). A total of 13 CpG Sequenom units were analyzed in the small CpG island located in the only translated ZBTB12 exon. Principal component analysis (PCA) was performed to identify groups of CpG units with similar methylation estimates. Linear mixed effect regressions showed a positive association between methylation of ZBTB12 Factor 2 (including CpG units 8, 9–10, 16, 21) and TNF-ɑ stimulated procoagulant activity, a measure of procoagulant and inflammatory potential of blood cells. In addition, we also found a negative association between methylation of ZBTB12 Factor 1 (mainly characterized by CpG units 1, 3–4, 5, 11, and 26) and white blood cell and granulocyte counts. An in silico prediction analysis identified granulopoiesis- and hematopoiesis-specific transcription factors to potentially bind DNA sequences encompassing CpG1, CpG3–4, and CpG11. Conclusions ZBTB12 hypomethylation is linked to shorter TNF-ɑ stimulated whole blood coagulation time and increased WBC and granulocyte counts, further elucidating the possible link between ZBTB12 methylation and cardiovascular disease risk

    Variation of PEAR1 DNA methylation influences platelet and leukocyte function.

    Get PDF
    Background Platelet-endothelial aggregation receptor 1 (PEAR-1) is a transmembrane receptor involved in platelet activation and megakaryopoiesis whose expression is driven by DNA methylation. PEAR1 variants were associated with differential platelet response to activation and cardiovascular outcomes. We aimed at investigating the link between PEAR1 methylation and platelet and leukocyte function markers in a family-based population. Results We measured PEAR1 methylation in 605 Moli-family participants with available blood counts, plasma P-selectin and C-reactive protein, whole blood platelet P-selectin, and platelet-leukocyte mixed conjugate measurements. We performed principal component analysis (PCA) to identify groups of highly correlated CpG sites. We used linear mixed regression models (using age, gender, BMI, smoking, alcohol drinking, being a proband for family recruitment, being a member of myocardial infarction (MI) family as fixed effects, and family as a random effect) to evaluate associations between PEAR1 methylation and phenotypes. PEAR1 methylation Factor2, characterized by the previously identified megakaryocyte-specific CpG sites, was inversely associated with platelet-monocyte conjugates, P-selectin, and WBC counts, while positively associated with the platelet distribution width (PDW) and with leukocyte CD11b and L-selectin. Moreover, PEAR1 Factor2 methylation was negatively associated with INFLAscore, a low-grade inflammation score. The latter was partially mediated by the PEAR1 methylation effect on platelet variables. PEAR1 methylation association with WBC measurements and INFLAscore was confirmed in the independent cohort FLEMENGHO. Conclusions We report a significant link between epigenetic signatures in a platelet functional gene and inflammation-dependent platelet function variability measured in two independent cohorts

    SPINE20 recommendations 2021: spine care for people's health and prosperity

    Get PDF
    PURPOSE: The focus of SPINE20 is to develop evidence-based policy recommendations for the G20 countries to work with governments to reduce the burden of spine disease, and disability. METHODS: On September 17-18, 2021, SPINE20 held its annual meeting in Rome, Italy. Prior to the meeting, the SPINE20 created six proposed recommendations. These recommendations were uploaded to the SPINE20 website 10 days before the meeting and opened to the public for comments. The recommendations were discussed at the meeting allowing the participants to object and provide comments. RESULTS: In total, 27 societies endorsed the following recommendations. SPINE20 calls upon the G20 countries: (1) to expand telehealth for the access to spine care, especially in light of the current situation with COVID-19. (2) To adopt value-based interprofessional spine care as an approach to improve patient outcomes and reduce disability. (3) To facilitate access and invest in the development of a competent rehabilitation workforce to reduce the burden of disability related to spine disorders. (4) To adopt a strategy to promote daily physical activity and exercises among the elderly population to maintain an active and independent life with a healthy spine, particularly after COVID-19 pandemic. (5) To engage in capacity building with emerging countries and underserved communities for the benefit of spine patients. (6) To promote strategies to transfer evidence-based advances into patient benefit through effective implementation processes. CONCLUSIONS: SPINE20's initiatives will make governments and decision makers aware of efforts to reduce needless suffering from disabling spine pain through education that can be instituted across the globe

    Reasoning on Non Functional Requirements for Integrated Services

    No full text
    • …
    corecore