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Supporting Self-adaptation via Quantitative
Verification and Sensitivity Analysis at Run Time
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Abstract—Modern software-intensive systems often interact with an environment whose behavior changes over time,
often unpredictably. The occurrence of changes may jeopardize their ability to meet the desired requirements. It is
therefore desirable to design software in a way that it can self-adapt to the occurrence of changes with limited, or even
without, human intervention.
Self-adaptation can be achieved by bringing software models and model checking to run time, to support perpetual
automatic reasoning about changes. Once a change is detected, the system itself can predict if requirements violations
may occur and enable appropriate counter-actions. However, existing mainstream model checking techniques and tools
were not conceived for run-time usage; hence they hardly meet the constraints imposed by on-the-fly analysis in terms
of execution time and memory usage.
This paper addresses this issue and focuses on perpetual satisfaction of non-functional requirements, such as reliability
or energy consumption. Its main contribution is the description of a mathematical framework for run-time efficient
probabilistic model checking. Our approach statically generates a set of verification conditions that can be efficiently
evaluated at run time as soon as changes occur. The proposed approach also supports sensitivity analysis, which
enables reasoning about the effects of changes and can drive effective adaptation strategies.

Index Terms—Self-adaptive Systems, Software Evolution, Non-functional Requirements, Discrete-Time Markov mod-
els, Rewards, Software Reliability, Costs, Probabilistic Model Checking, Models at Runtime.
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1 INTRODUCTION

Software is the driving engine of modern society.
Most human activities—including critical ones—
are either software enabled or entirely managed by
software. As software is becoming ubiquitous and
society increasingly relies on it, the adverse impact
of unreliable or unpredictable software cannot be
tolerated. This is further exacerbated by the fact
that modern software-intensive systems are often
situated in complex contexts that can be hard or
even impossible to fully understand and precisely
describe at design time. Moreover, the context’s
behavior may change over time unpredictably, thus
jeopardizing satisfaction of the desired require-
ments. Finally, these systems are continuously run-
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ning and cannot be shut down to perform off-line re-
configurations or upgrades. Designing systems that
can detect the occurrence of changes, reason about
their effects, and possibly react to them in a self-
adaptive manner has become a real challenge for
software engineers. Systems of this kind are often
called self-adaptive or autonomic.
Examples of potentially disruptive changes are:

1) Changes of location in the physical environ-
ment due to device mobility, which may affect
connectivity conditions. This problem may
occur in pervasive computing scenarios.

2) Changes in third-party services integrated in
the system under consideration, which may
cause unexpected misbehaviors of the inte-
grated system. This problem may occur in the
case of service-oriented systems.

3) Changes of clients’ operational profiles, which
may bring the running application into unex-
pected load conditions and cause unacceptable
response times. This problem may occur in
the case of user-intensive software applica-
tions.
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4) Changes in the deployment environment,
which may lead to violations of quality of
service, such as response time. This problem
may occur in cloud/service computing infras-
tructures.

Continuous changes in the environment typically af-
fect cyber-physical systems, whose key components
behave as sensors and actuators, used to sense and
act upon the physical world. Last, but not least, the
goals to be met and the requirements to be satisfied
may also change over time.

In this work we ignore requirements evolution
and focus instead on how to react to changes that
may occur in the environment in which the applica-
tion is embedded. In addition, we focus on changes
that may affect the satisfaction of non-functional
requirements, such as reliability, performance, and
different kinds of cost-related requirements, such as
energy consumption. We describe an approach that
can predict possible failures caused by environment
changes and thus self-adapt by triggering appropri-
ate countermeasures. In the sequel we use the term
failure to indicate a (non-functional) requirement’s
violation. For a further discussion about the defini-
tion of non-functional requirements and failures the
reader can refer to [1].

Engineering self-adaptive systems calls for spe-
cific new approaches to the development and op-
eration of software that guarantee lifelong require-
ments fulfillment in the presence of environmental
changes. A self-adaptive systems must be able to (1)
detect the relevant changes in the external world in
which it operates, (2) reason about its own ability to
continue to fulfill the requirements as a consequence
of the detected changes, and (3) re-configure itself to
guarantee a seamless adaptation to the new external
conditions.

Software engineering for self-adaptive systems
has been a growing research topic during the
past decade and many promising results have been
achieved. For a broad view of the area, the reader
may refer to the series of SEAMS1 workshops
and symposia and the two Dagstuhl reports [2],
[3]. Several promising approaches to software self-
adaptation rely on the use of models at run-time
[4]. Our work fully embraces this view. We keep
models at run time and update them automatically as
changes are dynamically discovered through moni-

1. http://www.self-adaptive.org
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Fig. 1: Model-checking at run-time.

toring (see [5], [6], [7], [8], [9]). Updated models
can be used to reason about and predict possible
requirements violations, which may then trigger
proper adaptation strategies to steer system re-
configurations and prevent requirements violations.
Conceptually, this framework establishes a feedback
control loop between models and the running sys-
tem. At run time, the system feeds data back to
generate model updates. Adaptation thus becomes
model-driven. This approach reflects the autonomic
control loop advocated in [10] and illustrated (in
slightly different terms) in Figure 1.

Since our main focus is on non-functional proper-
ties, we decided to use Markov models, which nicely
support quantitative probabilistic systems specifi-
cations as well as formalization and verification
of requirements, such reliability, performance, and
costs, through a probabilistic temporal logic and
model checking. Previous work has shown how
model-checking could be used at run-time to support
self-adaptation [11], [12], [5], [6]. Through model
checking, one can check the desired requirements
against the model of the system. Model checking
can not only detect a requirement violation but also
produces insights into the originating causes. It sup-
ports prediction of potential violations by applying
reasoning on future behaviors that may occur, but
may have not occurred yet. It also supports analysis
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of potential alternatives to reason about compet-
ing adaptation strategies. Finally, model checking
techniques rely on well-known and effective algo-
rithms that are now available as powerful, off-the-
shelf, open-source tools, such as PRISM [13] and
MRMC [14].

Traditional model checking techniques and tools,
however, in general cannot be applied as they are at
run time because they hardly meet the constraints,
in terms of performance and memory consumption,
imposed by on-line analysis and adaptation. Con-
sider for example the case where run-time verifi-
cation has to be performed on a node of a sensor
network, as in the example we will present in
Section 8. Existing model checking tools were in
fact conceived for off-line, design-time analysis.
This paper discusses how to bring them effectively
to run time.

The initial results on run-time efficient prob-
abilistic model checking were presented in [15].
Given a reliability model, knowing which model
parameters represent changeable information, and
given a set of requirements, the approach statically
generates a set of expressions encoding the veri-
fication conditions to be evaluated at run time to
verify satisfaction of system requirements. In this
work models are specified as Discrete-Time Markov
Chains (DTMCs) and requirements are expressed in
Probabilistic Computation Tree Logic (PCTL) [16].
This work assumes that changes can be encoded
as new values of transition probabilities, modeling
events or actions whose probability of occurrence
can change at run time. The approach has been
extended in [17] to support DTMCs augmented
with rewards—R-DTMCs [18]—which are more
expressive than DTMCs and can also express costs
and performance concerns. This paper puts all these
findings together in a coherent form, presents a
complete formal treatment of the approach and a
further extension to also support sensitivity analysis.
Sensitivity analysis aims at improving the effec-
tiveness of run-time adaptation by identifying the
sources of variability that are primarily responsible
for requirements violation. As a further contribution,
this paper also provides an extended evaluation to
assess the applicability of the proposed solution and
compare it with other approaches.

This paper is organized as follows. Section 2
provides a detailed problem statement and preview
of the approach. Section 3 provides an overview of

the mathematical foundations and formalisms upon
which the paper is based. Section 4 describes a
Web application, which is used throughout the paper
to exemplify and validate concepts and techniques.
Section 5 and 6 provide a detailed description of
the proposed approach for run-time efficient prob-
abilistic model checking. Section 7 motivates and
presents sensitivity analysis. Section 8 describes a
practical application to the realization of a self-
adaptive communication protocol for a wireless sen-
sor network. Section 9 contains a detailed discussion
of related work. Section 10 empirically validates the
approach also through a comparison with related
techniques. Finally, Section 11 contains conclusions
and outlines some future work directions.

2 PREVIEW OF THE APPROACH

As discussed in the previous section, model veri-
fication is used at run time to analyze the effect
of changes and trigger adaptive reconfigurations.
Model checking algorithms, however, are computa-
tionally expensive, since they require an exhaustive
exploration of the model’s state space—which may
be very large—to analyze properties that may be
arbitrarily complex. The details concerning the com-
plexity of traditional probabilistic model checking
can be found in [19], [20], [21]. The computational
cost of model-checking may be prohibitive for on-
line usage during system operation. Hereafter we
give a preview of the approach we devised to make
run-time probabilistic model checking efficient.

We focus on systems modeled as Discrete Time
Markov Chains (DTMCs), and quantitative proba-
bilistic requirements. DTMCs are a widely accepted
formalism to model software system reliability [22],
[23], [24]. They are used for design-time reliabil-
ity assessment of systems composed of interacting
parts, such as component-based software or service
oriented architectures [25], [26], [27]. DTMCs can
be used under the assumption that the system’s
behavior meets, with some tolerable approximation,
the Markov property, i.e. the probability of moving
to the next state only depends on the current state,
not on the history that lead to that state. This
property can be verified as discussed in [28], [29].

As for most design approaches based on Markov
Chains (e.g., [29], [30]), we assume that the model
describes behaviors that depend on interaction
profiles and failure probabilities, which are used
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to label transitions with probability distributions.
DTMCs can be extended with rewards, expressed
as numerical labels associated with states or tran-
sitions. This extension supports specification of ad-
ditional cost-related concerns, such as the energy
consumption. These concerns may be crucial, for
instance in the case of battery-operated devices.

The models developed at design time are often
subject to uncertainty: certain behaviors are hard to
predict, or they may change unpredictably during
operation. For example, the failure probability of an
operation (represented by a transition in the model)
or the energy cost of an operation performed by
a device (represented by a state reward) may be
hard to predict and estimates gathered by running
instances of similar systems may be inaccurate. To
account for uncertainty in model parameters, we use
symbolic variables as labels.

The approach we propose follows two steps,
executed at design time and run time, respectively.
We refer to the design-time step as pre-computation
and the run-time step as verification, as illustrated
in Figures 2(a) and 2(b) . The pre-computation is
a partial evaluation step [31]. It takes as input:
(1) the model of the system in the form of a (R-
DTMC), (2) a set of variable labels, and (3) the de-
sired system requirements expressed in (R-)PCTL.
Variable labels are model parameters whose value
becomes known at run time and may change over
time. The output produced by the pre-computation
step is a partially evaluated set of symbolic ex-
pressions, which represent a verification condition
to be satisfied to meet the requirements. Symbolic
expressions are formulae that depend on variable
labels and may be evaluated by binding concrete
values to them. Evaluation occurs at run time and
corresponds to the verification step of the approach.

The actual values to be bound to variables are
gathered by monitoring the system in its operational
environment. Let us consider an example where a
transition in the model leads to a failure state and
its variable label represents a component’s failure
rate, which may change over time. The symbolic
verification formula evaluated at design time might
represent a requirement that depends on the com-
ponent’s failure rate. The monitor can provide the
actual value of the component’s failure rate, which
can be used to check requirements satisfaction in
the current run-time situation.

In short, to achieve the benefits of continuous

Variable Labels
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Fig. 2: The two steps of the approach.

on-line verification, instead of executing traditional
model checking algorithms, our approach shifts as
much of the model verification cost as possible
to design time and brings only a residual inex-
pensive verification step to run time. Precisely, the
computationally expensive design-time process that
computes symbolic verification conditions reduces
run-time model checking to binding variables to the
values obtained by the monitor and evaluating the
expressions, which is computationally inexpensive
and does not require model exploration.

We will present the speed-up obtained by our
run-time model checking approach with respect to
existing probabilistic model checkers—PRISM [13]
and MRMC [14]—and we will also compare it
to other competing approaches, pointing out ad-
vantages and threats to validity of the different
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solutions. Our approach to model checking and the
tool we developed to support it are called WM2.
As we will show in Section 10, WM outperforms
existing probabilistic model checkers under the as-
sumption that potential changes can be anticipated
and the number of variable transitions is small. In
the extreme case, one may of course assume all
transitions to be variable, but this would make our
approach impractical.

In conclusion, our approach relies on the assump-
tion that, through careful design-time analysis, it
is possible to restrict design-time uncertainty and
run-time variability to a subset of environment pa-
rameters that are modeled as variable model labels.
Precisely, we assume that: (1) we can anticipate
which variable labels need to be introduced in the
model and (2) they are a small fraction of the total
number of labels. These assumptions are valid in
many practical cases. If the number of varying pa-
rameters is large, the approach may still be applied,
but would become impractical.

3 BACKGROUND

This section briefly recalls the necessary back-
ground needed to understand the approach we devel-
oped to support efficient run-time verification. We
first revisit Discrete-Time Markov Chains and then
we present the quantitative temporal logic PCTL.
Both DTMCs and PCTL are also presented in their
extended form with rewards, which enhance the
modeling capability. For a more complete treatment
of the mathematical model and property language
the reader may refer to [19].

3.1 Discrete-Time Markov Chains
A Discrete-Time Markov Chain (DTMC) is a
stochastic process satisfying the Markov property
and having time domain T ⊆ N. It is defined as a
Kripke structure [32] with probabilistic transitions
between states. The state space S is here assumed
to be finite.

Definition 3.1 (Discrete Time Markov Chain)
A (labeled) DTMC is a tuple (S,s0,P,L,AP) where
• S is a finite set of states

2. The acronym WM stands for working mom, the name we
informally gave to our approach. This comes from the metaphor cook
first, warm-up later that intuitively describes the distinction between
design-time pre-computation and run-time evaluation.

• s0 ∈ S is the initial state
• P : S×S→ [0,1] is a stochastic matrix
• AP is a set of atomic propositions
• L : S→ 2AP is a labeling function that asso-

ciates to each state the set of atomic proposi-
tions that are true in that state.

In the remaining of the paper, the notation pi j
will be used as short form for P(si,s j). An entry
pi j represents the probability that the next state of
the process will be s j given that the current state is
si. Each row i of matrix P is called the next-state
distribution of state si and is formally a categorical
distribution [33], implying that the elements in each
row sum to one.

The probability of moving from si to s j in exactly
two steps can be computed as ∑sx∈S pix · px j, that
is the sum of the probabilities of all the paths
originating in si, ending in s j, and having exactly
one intermediate state. The previous sum is, by
definition, the entry (i, j) of P2. Similarly, the prob-
ability of reaching s j from si in exactly k steps is the
entry (i, j) of matrix Pk. As a natural generalization,
matrix P0 ≡ I represents the probability of moving
from state si to state s j in zero steps, i.e. 1 if si = s j,
0 otherwise.

A sequence of states π = s0,s1,s2, . . . is an ex-
ecution path through the DTMC if P(si,si+1) > 0
holds for any pair (si,si+1). The notation π[i] with
i ≥ 0 is used to refer to the ith state in the path π .
A path is said to be finite if the number of states in
the sequence is finite; its length is denoted as |π|.
The probability for a finite path to be traversed is 1
if |π|= 1, otherwise ∏

|π|−2
k=0 P(sk,sk+1). A state s j is

reachable from state si if there exists a finite path
starting in si and terminating in s j.

The states of a DTMC can be classified as either
transient or recurrent [34]. A state si is said to be
transient iff:

∞

∑
n=0

Pn(si,si)< ∞

A state si is instead recurrent if:
∞

∑
n=0

Pn(si,si) = ∞

After each visit, a recurrent state will be eventu-
ally visited again with probability 1. On the other
hand, when the process reaches a transient state
there is a non zero probability that it will never
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visit it again. Furthermore, in a DTMC the number
of visits to a transient state is distributed as a
geometric random variable [35]. A recurrent state
si with pii = 1 is called absorbing. If a DTMC
contains at least one absorbing state, the DTMC
itself is said to be absorbing. For simplicity, all the
Markov models considered in this work are assumed
to satisfy the following property, unless otherwise
specified:

A DTMC model is well formed if: (1) all
the states are reachable from the initial
state, and (2) from every transient state it
is possible to reach at least one absorbing
state.

Notice that focusing the discussion on well-
formed DTMCs does not affect the generality of our
technique because it is possible to reduce any of the
verification problems we consider in this paper to
the probability of reaching an absorbing state in a
(equivalent) well-formed DTMC. Similar reductions
are common in probabilistic model checking [19],
[36] and will be discussed also in Section 5.2.1.

In an absorbing DTMC with r absorbing states
and t transient states it is possible to reorder the
rows and the columns of the transition matrix P to
transform it into the following canonical form:

P =

(
Q R
0 I

)
(1)

where I is an r × r identity matrix, 0 is an r × t
zero matrix, R is a nonzero t × r matrix and Q is
a t × t matrix.

Since Q specifies only the transitions between
transient states, some of its rows sum to strictly
less than 1. This is immediate to show for well-
formed DTMCs. For the same reason, the following
fact holds concerning the probability of absorption
(see [37]):

In a well-formed absorbing Markov chain,
the probability of the process to be eventu-
ally absorbed is 1 (i.e. Qk→ 0 as k→∞.).

The number ni j of visits to a transient state s j,
for a process started in si, can be computed as the
probability of visiting it in the first step, or in the
second, or in the third, and so on. In matrix form:

N = I +Q1 +Q2 +Q3 + · · ·=
∞

∑
k=0

Qk

This is a geometric series converging to (I−Q)−1.
The matrix N is called the fundamental matrix of
the DTMC.

DTMCs are a valuable formalism to model soft-
ware execution flows using quantitative data to rep-
resent the likelihood of moving from state to state
and also to identify failure and success states. Often
software modelers need also to express quantitative
information concerning some abstract notion of cost
associated with a state or a transition and a way to
quantify accumulated costs as paths are traversed
on the DTMC. Concrete examples of costs are the
average execution time of a transaction, or its power
consumption, or even the monetary cost involved in
using a pay-per-use service. To accommodate this
modeling requirement, DTMCs may be augmented
with rewards [18]. Rewards are non-negative real
values through which a benefit (or loss) due to the
residence in a specific state or the move along a
certain transition can be quantified.

Definition 3.2 (Reward-DTMC)
A Reward DTMC (R-DTMC) is a tuple

(S,s0,P,L,AP,ρ), where S, s0, P, L, AP are defined
as for a DTMC, while ρ : S→R≥0 is a state reward
function assigning a non-negative real number to
each state.

Informally, the total reward cumulated after com-
pleting the traversal of a path π = s0,s1,s2, . . . ,sk is
∑

i=k
i=0 ρ(si).
According to this definition, rewards are asso-

ciated with states only. It would be possible to
also associate rewards with transitions. It can be
proved, however, that an equivalent R-DTMC with
only state rewards can always be built given a R-
DTMC with both state and transition rewards (see
for example [38].)

The definition of a R-DTMC can be generalized
by allowing probabilities and rewards to be assigned
a symbolic variable instead of a numeric value.

Definition 3.3 (Parametric R-DTMC)
Let Σp and Σr be two finite sets of symbolic

parameters. A parametric R-DTMC is a tuple
(S,s0,P,L,AP,ρ), where S, s0, L, AP are defined as
for a R-DTMC, while
• P : S×S→ [0,1] ∪ Σp is a parametric stochas-

tic matrix,
• ρ : S→R≥0 ∪ Σr is a parametric state reward,
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A valid evaluation of a parametric R-DTMC
requires the assignments of the symbolic parameters
to comply with Definitions 3.1 and 3.2, i.e. 1) each
element σp ∈ Σp evaluates to a real value in [0,1]
such that for each state the sum of the outgoing tran-
sitions is 1, and 2) each element σr ∈ Σr evaluates
to a non-negative real number.

Unless otherwise specified, in the remaining of
the paper we will consider all R-DTMC to be
parametric and all the considered evaluation to be
valid.

3.2 Probabilistic Computation Tree Logic
PCTL [16], [39] is a probabilistic branching-time
temporal logic, based on the classic CTL logic [19].
A PCTL formula predicates on a state of a Markov
process, and evaluates to either true or false. PCTL
may be extended to support rewards yielding R-
PCTL [19], [21].

Definition 3.4 (R-PCTL formulae)
R-PCTL formulae are recursively defined by the
following syntactic rules:

φ ::= true | a | φ ∧ φ | ¬ φ | P./p (ψ) | R./r (Θ)

ψ ::= X φ | φ U≤t
φ

Θ ::= I=k | C≤k | ♦φ

where p ∈ [0,1], ./∈ {<,≤,>,≥}, t ∈ N ∪ {∞},
r ∈ R≥0, and k ∈ N, and a represents an atomic
proposition.

The operator R./r (Θ) supports the specification
of properties that predicate over rewards. Let us first
discuss the semantics of basic PCTL ignoring the
reward operator.

Formulae derived from the grammar axiom φ are
called state formulae; those derived from ψ are
instead called path formulae. Notice that a path
formula may only occur as an argument of the prob-
abilistic modal operator P./p(·). PCTL differs from
its non-probabilistic ancestor CTL since universal
and existential path quantification are replaced by
the probabilistic operator P .

The temporal operators X and U≤t are called Next
and Bounded Until, respectively. The Unbounded
Until can be represented as U≤∞; this, however, is
normally abbreviated as U . As a short and conve-
nient form for true U≤tφ we can use the derived
operator ♦ (eventually): ♦≤t φ . It is also customary
to abbreviate ♦≤∞ as ♦.

The semantics of a state formula is defined as
follows:

s |= true
s |= a iff a ∈ L(s)
s |= ¬φ iff s 2 φ

s |= φ1∧φ2 iff s |= φ1 and s |= φ2
s |= P./p(ψ) iff Pr(π |= ψ|π[0] = s) ./ p

where Pr(π |= ψ|π[0] = s) is the probability that a
path originating in s satisfies ψ [19].

The following rules define whether a path π

originating in s satisfies a path formula ψ:

π |= Xφ iff π[1] |= φ

π |= φ1U≤tφ2 iff ∃0≤ j ≤ t (π[ j] |= φ2∧
(∀0≤ k < j π[k] |= φ1))

Let us now discuss the reward operator R./r (Θ).
Intuitively:
• R./r(I=k) is true in state s if the expected state

reward to be gained in the state entered at step
k along the paths originating in s meets the
bound ./ r.

• R./r(C≤k) is true in state s if, from state s, the
expected reward cumulated after k steps meets
the bound ./ r.

• R./r(♦φ) is true in state s if, from state s, the
expected reward cumulated before reaching a
state where φ holds meets the bound ./ r.

The third construct can be used, for example, to
state the average cost of a run of the system; that
is, the expected cumulated cost until the execution
reaches a completion state.

A more formal definition of the reward fragment
semantics can be found in [21]. Intuitively, the
expected reward R(Θ) for all possible paths exiting
a given state s and satisfying the pattern Θ can
be computed as the sum of the rewards for each
path, weighted by the probability of the path itself
(see Section 3.1). The following equations define
how the (expected) reward XΘ over a path π of
a R-DTMC is computed for each of the three
specification patterns:

XI=k(π) = ρ(sk) (2)

XC≤k(π) =

{
0 if k = 0
∑

k−1
i=0 ρ(si) otherwise

(3)
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X♦φ (π) =


0 if s0 |= φ

∞ if ∀i si 2 φ

∑
min{ j|s j|=φ}−1
i=0 ρ(si) otherwise

(4)
A final brief remark concerns the expressiveness

of R-PCTL for practical purposes. Once a system
is modeled via a R-DTMC, R-PCTL may naturally
represent a large number of practically important
properties we would like the system to satisfy. For
example, the language can express constraints on
the probability of reaching an absorbing failure or
success state, starting from an initial state. These are
examples of reachability properties. Reachability
properties are expressed by PCTL properties of the
kind P./p(♦ φ), which state that the probability
of reaching a state where φ holds matches the
constraint ./ p.

4 A RUNNING EXAMPLE

In this section we illustrate the modeling capabilities
of R-DTMCs through an example of a typical
Web application, which will be used subsequently
to exemplify the proposed approach for run-time
efficient probabilistic model checking. The model is
shown in Figure 3. It describes a system composed
of an HTTP Proxy server, a Web server, and an Ap-
plication server. Structured data and static content
(e.g., files, images, etc.) are stored in a Database
and in a File server, respectively. Both of them are
cached by ad-hoc cache servers.
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Fig. 3: Example of a parametric DTMC.

In Figure 3 all states are numbered by an integer
that uniquely identifies them. With the exception
of absorbing states (filled in grey), they represent
the execution of a certain operation and are fur-
ther labeled by a pair in the form n1/n2, which

represents rewards. Reward n1 models the average
cost associated with the operation, while n2 models
the average latency. Absorbing state s7 represents
the failure of serving an incoming request due to
unavailable server. This models the case where the
server is overloaded and drops requests, or the
case where it is down because of a maintenance
operation. Absorbing state s9 represents the failure
of the execution due to an excessive number of
requests to the storage services. Absorbing state s8
is the endpoint of a correct HTTP request.

Transitions describe the control flow that man-
ages an incoming HTTP request. For example the
transitions (s0,s1) and (s0,s3) are labeled with the
probability of the events “a dynamic content has
been requested that requires ad-hoc processing”
and “a static content has been requested”, respec-
tively. Transition (s1,s1) corresponds instead to the
probability of an HTTP self-redirect. Transitions
to absorbing states indicate the final outcome of
processing a request.

Parametric transitions indicate that the value of
the corresponding probability is unknown, uncer-
tain, or it may change over time. For example transi-
tions (s3,s4) and (s5,s6) model the cache hit prob-
ability, which depends on the current distribution
of user requests. Such parameters correspond to the
symbolic variables mentioned in Section 2. Notice
that, in the example, costs (modeled as rewards)
are instead known and fixed and therefore there are
no variables to model parametric costs. In matrix
form, the model of Figure 3 is characterized by the
transient-to-transient (Q) and transient-to-absorbing
(R) transition matrices described by Equations (5)
and (6):

Q=


0 (1− y)0.3 0 (1− y)0.7 0 0 0
0 0.2 0.55 0 0 0 0
0 0 0 0 0 0.7 0
0 0 0 0 1− x 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1− z
0 0 0 0 0 0 0


(5)

R =


y 0 0
0 0.25 0
0 0.3 0
0 x 0
0 1−w w
0 z 0
0 1− k k

 (6)
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Table 1 describes a set of requirements for our
example, formally specified using R-PCTL. Re-
quirements R1-R4 do not predicate on rewards,
while R5-R6 formalize constraints on costs and
latencies, modeled as state rewards.

TABLE 1: Requirements R1-R6.

ID Informal Definition PCTL

R1 (Reliability): “The probability of
successfully handling a request
must be at least 0.999”

P≥0.999(♦ s = s8)

R2 (Cache hit probability): “At least
80% of the requests are cor-
rectly handled without accessing
the database or the file server”

P≥0.8(¬(s = s4) ∧
¬(s = s6) U s = s8)

R3 (Complexity bound): “At least
70% of the requests must be suc-
cessfully processed within 5 oper-
ations”

P≥0.7(♦≤5 s = s8)

R4 (Early risk fingering): “No more
than 10% of the runs can reach
a state from which the risk of
eventually raising an exception is
greater than 0.95”

P≤0.1(♦ P≥0.95( ♦s=
s7∨ s = s9))

R5 (Cost): “The average cost for han-
dling a request must be less 0.03
dollars”

R≤0.03(♦ s = s7 ∨
s = s8∨ s = s9)

R6 (Response time): “The average re-
sponse time must be less than
0.022 seconds”

R≤0.022(♦ s = s7 ∨
s = s8∨ s = s9)

5 RUN-TIME EFFICIENT VERIFICATION
OF PCTL PROPERTIES

This section illustrates the algorithms for partial
evaluation of PCTL properties at design time, given
a system specified as a Markov model. The exten-
sion to R-PCTL is presented later in Section 6.

To simplify the discussion, PCTL will be par-
titioned in several fragments. Section 5.1 deals
with flat3 formulae for the reachability of an
absorbing state, which have the syntactic form
P./p (true U φ1)

4 where φ1 identifies one or
more absorbing states. The most common properties
expressed in practice can be encoded in PCTL as
reachability of an absorbing state [40]. Because of
their prevalent usage, and because their treatment
is a prerequisite for dealing with other formulae,
they deserve a separate description. Section 5.2

3. A formula is said to be flat if none of its sub-formulae contains
the P./p(·) nor the R./r(·) operator.

4. Or equivalently P./p (♦ φ1) (see Section 3.2).

addresses the remaining fragments, thus achieving
a full coverage of PCTL.

In the discussion we will present both the mathe-
matical methods we devised and their computational
complexity. An empirical evaluation of the design-
time complexity of partial evaluation will be pro-
vided in Section 10.

5.1 Reaching an Absorbing State
Before delving into the mathematical treatment of
partial evaluation of flat reachability formulae, we
show an example to illustrate the kinds of outputs
we generate, referring to the running example in-
troduced in Section 4. Consider requirement R1 in
Table 1. The partial evaluation algorithms defined
in this section compute the following parametric
expression, which corresponds to the probability of
reaching state s8:

fR1(k,w,x,y,z) =−0.7w− y−0.144375k+1
+0.7yw−0.7yxw+0.144375zk
+0.144375yk+0.7xw−0.144375yzk

(7)

When a run-time monitor provides the current
value of the parameters, the expression (7) can
be evaluated and the result can be compared with
the threshold 0.999 to verify the satisfaction of
requirement R1.

Partial evaluation of a flat reachability formula
can be performed as follows. Recalling the structure
of the transition matrix for an absorbing DTMC
given in Equation (1), the matrix I −Q (where I
is the identity matrix of the same size as Q) has an
inverse N and N = I +Q+Q2 +Q3 + · · ·= ∑

∞
i=0 Qi

[34]. Since an entry qi j of matrix Q represents the
probability of moving from the transient state si to
the transient state s j in exactly one time step, entry
ni j of N represents the number of times the Markov
process is expected to visit the transient state s j
before being absorbed, given that it started in state
si. A Markov process is considered to be absorbed
when it reaches any of the absorbing states. Notice
that Qn→ 0 when n→ ∞ (see Section 3.1); hence
every well-formed process will always eventually be
absorbed, no matter the state it started in.

Whenever the process enters a transient state si,
its probability of being absorbed in the next time
step in the absorbing state s j is given by the entry
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ri j of the matrix R. Generalizing to all the pairs
(si,s j) where si is transient and s j is absorbing, we
can get the absorbing distribution B of the DTMC
as:

B = N×R

An entry bi j of the matrix B represents the prob-
ability for the process of being eventually absorbed
in s j (in any number of steps), given that it started
from si. B is by construction a t× r matrix, where t
is the number of transient states and r the number
of absorbing states.

Given a DTMC D and a set T of target absorbing
states, the probability of reaching T from the initial
state s0 can be computed as:

Pr(true U {s j ∈ T}) = ∑
s j∈T

b0 j (8)

The goal of design-time pre-computation is to
compute the value of Equation (8). Matrix B can
be computed in different ways, depending on the
size of the system and the availability of a parallel
or a sequential execution environment.

By definition of matrix product, an entry bi j can
be computed as:

bi j = ∑
k=0..t−1

nik · rk j (9)

Entries ri j are readily available from matrix R.
Entries nik belong instead to the i-th row of matrix
N, which is the inverse of I−Q.

In Sections 5.1.1 and 5.1.2, we present two dif-
ferent approaches for the computation of the entries
bik. The former, based on matrix algebra algorithms,
can be quite effective in case of a small number
of parameters, even in a sequential execution en-
vironment. Furthermore, thanks to its formulation,
it is intrinsically parallel and suitable for different
kinds of parallelization. The latter instead reduces
the problem to the solution of a system of lin-
ear equations. This approach is quite efficient for
sequential execution environments thanks to the
existing implementations of effective heuristics for
sparse linear systems.

5.1.1 Matrix-Based Approach
The design-time computation of an entry bi j in
general can only be done symbolically, since para-
metric transitions may be traversed to reach state
s j. The arithmetic complexity of explicitly inverting
matrix I−Q of size t, where t is the number of
transient states, by means of the Gauss-Jordan elim-
ination algorithm is O(t3) [41]. The computation of
the entry bi j once N has been computed requires
O(t) more products, thus the total complexity is
O(t3 + t) ∼ O(t3) algebraic symbolic operations on
polynomials.

The actual complexity can be significantly re-
duced if the number c of states having paramet-
ric outgoing transitions is small and the transition
matrix of the DTMC is sparse, as very frequently
happens in practice.

Let W = I−Q. The elements of its inverse N are
defined as follows:

ni j =
1

det(W )
·α ji(W ) (10)

where α ji(W ) is the cofactor of the element w ji.
Thus:

bik = ∑
x∈0..t−1

nix · rx j =
1

det(W ) ∑
x∈0..t−1

αxi(W ) · rx j

(11)
Computing bik requires the computation of t de-

terminants of square matrices with size t−1. Let τ

be the average number of outgoing transitions from
each state (τ � n by the assumption of sparsity).
Determinants can be computed by Laplace expan-
sion. By expanding first the c rows representing
the variable states (each has τ symbolic terms),
at most τc determinants have to be computed and
then linearly combined. Each sub-matrix of size
t − c does not contain any variable symbol, by
construction, thus its determinant can be computed
with (t−c)3 operations among numeric values. The
latter operation does not involve symbolic terms,
hence it is in general much faster. Its actual com-
plexity depends on the precision of floating-point
(or rational numbers) representation. On the other
hand, memory could easily become an issue for
sequential environments because both intermediate
results and a possibly large set of sub-matrices have
to be stored for processing; for this reason in a
sequential environment only small systems can be
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analyzed with this algorithm (see Section 10 ). Thus
the final complexity is:

O(τc · (t− c)3)∼ O(τc · t3) (12)

which may significantly reduce the original com-
plexity assuming τ � n (sparsity) and c small
(few symbolic states), since here we execute τc · t3

arithmetic operations on numeric values instead of
symbolic expressions. This makes the design-time
pre-computation of reachability properties feasible
in a reasonable time, even for large values of t. As
a point of comparison, the computation of reacha-
bility properties performed by probabilistic model-
checkers is based on the solution of a system of n
equations in n variables [19], which has complexity
O(n3) [42] in a sequential computational model.

Notice that the procedure described in this section
is naturally parallelizable in several ways. First, the
sum in Equation (11) is intuitively formalizable by
a map-reduce pattern [43], where the map opera-
tion is the computation of each cofactor and the
reduce performs the weighted sum according to the
coefficients rx j. Furthermore, since the cofactor of a
matrix containing symbolic entries can be computed
by Laplace expansion, it is possible to design a hi-
erarchical map-reduce configuration. This approach
is valid both for multicore and distributed execution
environments. The main limitation in case of mul-
ticore could be the amount of memory required to
store all the intermediate results. Second, parallel
algorithms for matrix algebra have been largely
studied, mostly for numeric application, allowing
for efficient computation of at least the numeric
cofactors in (11) [44].

5.1.2 Equations-Based Approach
In this section we present an alternative approach
to symbolic reachability computation that does not
rely on the possible speedup of parallel execution.
As we observed, very often the transition matrix of
the DTMC modeling a software system is 1) very
sparse, since each component typically interacts
with a limited number of other components, and 2)
presents some regular topological patterns, which
reflect an implicit design rationale. By formulating
the computation of the elements bi j as the solution
of a linear system of equations, it is possible to
exploit state-of-the-art heuristics and provide a sig-
nificant speed-up in the actual execution time.

Let us first observe that the inverse of a (non-
singular) square matrix A satisfies the following
property: A ·A−1 = I. Hence, the i-th column of the
matrix A−1 corresponds to the solution the following
system of linear equations:

A · v = ei (13)

where ei is the i-th column of the identity matrix,
i.e. a column vector having all zero elements but
for the i-th that is 1, and v is the unknown vector
corresponding to the i-th column of A−1. Since to
solve Equation (9) one needs to compute the entries
of the i-th row of the matrix N = (I−Q)−1, it is
possible to exploit a property of the transpose of
invertible matrices, namely (A−1)T = (AT )−1. The
i-th row of (I−Q)−1 corresponds to the i-th column
of ((I −Q)−1)T , which is in turn equal to the i-
th column of ((I−Q)T )−1, by the aforementioned
property. The problem of calculating the row of the
matrix N and, through (9), of B is thus reduced to
the solution of a linear system of equations.

Let us now evaluate the computational complex-
ity of this approach. Solving linear equation systems
is a well studied mathematical problem, even though
most of the available libraries concern numerical
solutions and cannot deal with symbolic parameters
[45]. The most popular algorithms to solve linear
equation systems embedded in probabilistic model-
checkers are iterative ( [46], [47]). They can effi-
ciently solve even large systems with the desired
precision of the final result and without requiring a
large amount of memory.

In our case it is not possible to adopt the same
strategies because iterative methods do not deal con-
veniently with symbolic parameters. The presence
of unknown parameters makes it hard to assess
the convergence of the solution. For this reason
direct method have been adopted, optimized for the
solution of sparse linear systems [48].

In [17] we presented an approach that is sup-
ported by a solver based on structured Gaussian
elimination and Markowitz pivoting [48]. Structured
Gaussian elimination is a variation of the widely
used method to triangularize linear systems, which
reduces the solution of a large sparse equation
system to the solution of a small dense one. This
reduction step can significantly reduce the size of
the system to be actually solved. A core element of
structured Gaussian elimination is the strategy used



Pre
pr

int

IEEE TRANSACTION ON SOFTWARE ENGINEERING 12

to select the order in which elements of the original
system are eliminated. In fact, each elimination step
may reduce the sparsity of the obtained system,
reducing in turn the global effectiveness of the
method. This problem is known as fill-in. To reduce
fill-in during the elimination steps, we adopted
Markovitz pivoting to select the next element to be
eliminated. Other strategies can be more efficient
for specific cases but their discussion is beyond the
scope of this paper. The interested reader may refer
for example to [48].

To avoid any loss of accuracy during intermedi-
ate computation steps, our design-time solver uses
infinite precision rational numbers for all the nu-
meric values in the models. All the mathematical
procedures have been implemented in Maple 155.

5.2 Towards Coverage of Full PCTL
Although many practically relevant requirements
may be specified as the reachability of an absorbing
state [40], there are cases where the properties
of interest require the expressive power of full
PCTL. In this section, algorithms will be provided
to extend the approach to handling all the remaining
fragments of PCTL.

We will start by discussing flat unbounded Until
formulae, whose pattern is P./p (φ1 U φ2). Being
flat, neither φ1 nor φ2 nor their sub-formulae can
contain the operator P./p(·). This class is indeed
a superclass of the fragment P./p(♦φ) studied in
the previous section. Afterwards, in Section 5.2.3,
we will present algorithms to verify the bounded
operators X and U≤t , concluding the verification
of the flat fragment. Formulae with nested P./p(·)
operators will be treated in Section 5.2.4.

5.2.1 Flat Until Formulae
An example of a flat Until formula is given by
requirement R2 in Table 1 for the running example
introduced in Section 4. This formula specifies that
the process is required to reach state s8 without
traversing states s4 and s6.

The core idea for analyzing generic flat Until
formulae is to reduce the problem to the analysis
of equivalent reachability formulae, and then apply
the solution procedures we have already seen. This
reduction process goes through the following trans-
formation of the DTMC model.

5. http://www.maplesoft.com

Given a DTMC D = (S,s0,P,L) and a flat until
formula P./p (φ1 U φ2), a DTMC D̄ is derived from
D through the following procedure:

1) Add two absorbing states sgoal and sstop.
2) For all the states where φ2 holds, remove all

the outgoing transitions and introduce a single
transition toward sgoal with probability 1.

3) For all the states where ¬(φ1 ∨ φ2) holds,
remove all the outgoing transitions and intro-
duce a single transition toward sstop labeled
with probability 1.

The state space of D̄ is S∪{sgoal,sstop}; the labeling
function of D̄ is extended accordingly by the two
atomic predicates Sgoal and Sstop holding only in
states sgoal and sstop respectively. The transition
matrix of D̄ will be denoted as P̄.

Theorem 5.1 (Flat Until Verification)
P./p (φ1 U φ2) holds in state si of D iff
P./p (♦ sgoal) holds in state si of D̄.

Proof 5.1 For a path π of D originating in si and
satisfying the path formula φ1Uφ2 there exists k≥ 0
such that π[k] |= φ2 and for all j, 0≤ j < k : π[ j] |=
φ1∧¬φ2. By construction, there will exist one and
only one path π̄ in D̄ such that for all j, 0 ≤ j ≤
k : π̄[ j]≡ π[ j] and π̄[k+1] |= Sgoal. Furthermore,
Pr(π) = Pr(π̄) because, by construction, for all j,
0 ≤ j < k P(π[ j],π[ j + 1]) = P̄(π̄[ j], π̄[ j + 1]) and
P̄(k,sgoal) = 1.

By virtue of Theorem 5.1, verification of
P./p (φ1 U φ2) can be reduced to verification of the
flat reachability property P./p (♦ sgoal) on D̄, for
which the algorithms defined in Section 5.1 hold.

Let us consider again the example of require-
ment R2 in Table 1 for the example of Section 4.
According to the construction procedure discussed
here, in the derived DTMC D̄ state s8 will be
connected with probability 1 to sgoal, while states s4
and s6 are connected with probability 1 to state sstop.
Satisfaction of requirement R2 can be evaluated by
computing the probability of reaching the absorbing
state sgoal, which results in the following symbolic
expression:

fR2(k,w,x,y,z) = 0.7x−0.155625y
+0.144375z−0.144375yz
−0.7yx+0.155625

(14)
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Notice that the parameters k and w do not ap-
pear in the expression, meaning that heir value is
irrelevant for the verification of R2, as it can be
intuitively assessed by looking at the DTMC of
Figure 3.

5.2.2 Alternative formulations for classes of
flat Until properties
Before proceeding, in this section we report alter-
native direct algorithms for two classes of flat until
formulae, which do not require the construction of
the transformed process D̄. The former is based
on the so-called first-step analysis [49]. The latter
is based on an algorithm to compute reachability
of a transient state from the theory of stochastic
processes [34].
First-Step Analysis for Flat Until
First-step analysis [49] exploits the locality proper-
ties of Markov processes to transform the problem
of computing flat until formulae into the solution of
a system of linear equations, structurally different
from the one presented in Section 5.1.2 but still
yielding the same solution. First-step analysis will
also be exploited in Section 6 to formalize the
verification of reward properties.

First-step analysis for flat until formulae
P./p (φ1 U φ2) requires solving the following
system of linear equations:

u∗(si) = ∑
sk∈S

pik ·u∗(sk) (15)

subject to the following boundary conditions:

u∗(si) =


1 if si |= φ2

0 if si |= ¬(φ1∨φ2)

0 if si ∈C ∧ si 6|= φ2

(16)

where C is the set of absorbing states of D.
The boundary conditions (16) describe the ele-

mentary cases for the computation of u∗. The first
and second case present an immediate correspon-
dence to steps 2 and 3 of the construction of the
previously defined D̄. The third case accounts for
the possible presence of absorbing states satisfying
φ1 but not φ2, thus not included in the second case;
from such states there is clearly no chance to satisfy
φ1Uφ2 because of their absorbing nature.

The solution of the system of linear equations
defined by (15) and (16) involves symbolic com-
putations in presence of model parameters. The

algorithms defined in Section 5.1.2 obviously apply
also to this case.
Reachability of Transient States
An alternative procedure is presented here to com-
pute a special case of the flat until property: trueUφ ,
where φ identifies transient states. Reachability of
transient states can be computed without transform-
ing a DTMC D into a DTMC D̄, based on the
theoretical background from [34].

First, the probability of reaching a transient state
from an absorbing state is trivially 0, while the
probability of reaching s j from itself is trivially 1.
For any two distinct transient states si and s j, let
f k
i j be the probability that the first hitting of state

s j happens at time k, given that the process started
from si and let Xk represent the random variable
representing the state of the process at time k:{

f 0
i j = 0

f k
i j = Pr(Xk = s j∧∀0≤ y < k Xy 6= s j|X0 = si)

(17)
Let

fi j =
∞

∑
k=0

f k
i j (18)

Thus, fi j represents the probability of ever reach-
ing state s j given that the process started from
si. Notice that, for every well-formed DTMC (see
Section 3.1) f0 j > 0, because every state of the
model has to be reachable from the initial state.
Furthermore, since the only recurrent states are the
absorbing ones, fii < 1 for every the transient state
si.

Though Definition (18) formalizes the probability
of reaching a transient state, the computation of
its actual value is not straightforward from the
definition. This can instead be done by recalling the
definition given in Section 3.1 of the fundamental
matrix N, whose entries ni j represent the expected
number of visits to the transient state s j before
absorption, given that the process started in si.
Assuming the values fi j to be known, ni j can be
derived by conditioning on whether state s j is ever
visited:

ni j = E(number of visits to state s j | X0 = si)
= n j j · fi j

(19)
In other words, the value n j j is the expected number
of “returning” visits to s j given that it is eventually
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reached from state si (see [34], page 190). From
Equation (19), it is immediate to derive:

fi j =
ni j

n j j

Summing up, si |= P./p (♦ s = s j) iff fi j ./ p.
This relationship allows for the use of the matrix-
based algorithms provided in Section 5.1.1.

5.2.3 Flat Bounded Formulae
In a flat bounded state PCTL formula the arguments
of the P./p(·) operator is a flat Next or a Bounded
Until path formula.

Let us first consider the Next operator. The set of
paths to consider in order to estimate the probability
of a path formula Xφ in a state si is the set of all the
1-step long paths originating in si. Since φ is flat,
the states satisfying φ can be identified once for
all at design time. The transition matrix P contains
the probability of moving from a state to another in
a single step. Hence, computing the probability of
reaching, from a state si, a state where φ holds in
1 step, can be computed as:

Pr(X φ) = ∑
s j|=φ

pi j (20)

As for the Bounded Until operator, notice that
each path originating in a state si and satisfying
φ1U≤tφ2, at a certain step k ≤ t will reach a state
s j where φ2 holds, and for all the previous steps φ1
has to hold. Referring to a DTMC D̄ constructed
as in Section 5.2.1, each of these paths corresponds
to a path in D̄ that exactly at step k+1 reaches the
state sgoal. Hence, any path of D satisfying φ1U≤tφ2
corresponds to a path in D̄ being at step t+1 in state
sgoal.

The probability distribution of the states reached
after exactly t +1 time steps in D̄ can be computed
by raising the transition matrix P̄ to the power of
(t +1):

Pr(Xk |= φ2∧ k ≤ t | X0 = si) = P̄t+1(si,sgoal) (21)

Summarizing, si |= P./p (φ1U≤tφ2) on D iff
P̄t+1(si,sgoal) ./ p on D̄.

As an example of the evaluation of a flat Bounded
Until, consider requirement R3 in Table 1 for the
running example illustrated in Section 4. The re-
sulting parametric expression corresponding to the

probability of reaching state s8 within 5 steps is
given by Equation (22).

fR3(k,w,x,y,z) = 0.10548−0.10548y
+(0.0231−0.0231y)z
+(0.165−0.165y)(0.7−0.7z)(1− k)
+(0.165−0.165y)(0.3+0.7z)
+(0.7−0.7y)(1− x)(1−w)
+(0.7−0.7y)x

(22)

5.2.4 Nested Formulae
The analysis of PCTL has been so far restricted to
its flat fragment, where the arguments of a P./p(·)
operator are Boolean combinations of atomic propo-
sitions only. The peculiarity of flat formulae is that
it is always possible at design time to identify the
states where a state formula φ holds, and thus
generate a parametric expression by means of the
procedures defined in the previous sections.

In the case of nested formulae, some information
needed to compute the desired parametric expres-
sion may only become available at runtime. For
instance, consider requirement R4 in Table 1 for
the running example introduced in Section 4: the
set of states from which an error will eventually
occur with probability greater than .95 will only
be known at run time, because it depends on the
actual value of the model parameters. Thus, the
probability of reaching any of these states cannot
be computed at design time with the previously
defined procedures, because it would not be possible
to identify the target states. To evaluate a formula
with nested P./p (·) operators, we need to know
in which states its sub-formulae are satisfied. The
same consideration can be applied recursively to
sub-formulae of a sub-formula, until a flat one is
reached that can be directly analyzed.

To deal with this issue without losing the benefits
of parametric verification, the solver needs to delay
at run time the evaluation of a nested formula, until
all the knowledge concerning its sub-formulae has
been gathered.

Focusing on Until formulae, the solution provided
in Section 5.2.1 is based on the construction of the
modified DTMC D̄. Such a construction requires
certain states to be disconnected from their succes-
sors and then connect them to either sgoal or sstop.
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As previously explained, the resulting parametric
expression would be computed as the reachability
of the absorbing state sgoal in D̄.

To delay the decision about the connection of
a state to sgoal or to sstop at run time, we simply
need to add three more parameters to each state.
The first is a coefficient αi that multiplies all the
elements pi j of D. The second and the third are
parameters βi goal and βi stop, respectively, that de-
fine P̄(si,sgoal) and P̄(si,sstop). The three additional
parameters can assume either 0 or 1 as a value, and
their intuitive purpose is the following: by assigning
0 to a parameter αi state si is disconnected from
all its successors; by assigning 1 to either βi goal
or βi stop state si becomes connected to state sgoal
or sstop, respectively. Notice that, because of their
meaning with respect to the definition of DTMC, for
every valid parameter assignment one and only one
among αi, βi goal, and βi stop can take the value 1.

Computing the probability of a path ♦ sgoal at
design time leads to a parametric expression having
as variables both the model parameters and the
additional parameters αi, βi goal, and βi stop for each
state si. At run time, when information about the
sub-formulae of a nested formula becomes avail-
able, the value of the additional parameters can be
set in order to adapt the expression to reflect the
convenient transformation of D̄.

The recursive application of this procedure on
nested formulae keeps the benefits of parametric
analysis, though it requires as many evaluations
as the nesting depth of a formula. Assuming that
most nested formulae used in practice have limited
nesting levels, the impact on complexity would still
be limited. Another drawback for run-time analysis
of nested formulae is that the resulting mathematical
expressions are in general longer than in the case of
flat formulae due to the presence of more parame-
ters, but the evaluation time would still be much
faster than the execution of a conventional model-
checking routine for systems of a realistic size. An
evaluation of the impact the number of parameters
has on the design-time complexity will be provided
in Section 10.

At design time, the computation of Next and
Bounded Until nested formulae follows the same
principle just described for Until, and they have to
be computed on the model instrumented with the
additional parameters αi, βi goal, and βi stop. The
adaptation of the mathematical procedure for the

Next operator is straightforward. The main issue
with this approach is the computational complexity
at design time. Indeed, the additional parameters
may have a high impact on the execution time of
the algorithms from Section 5.1. To leverage this
issue, parallel implementations may be used on high
performance platforms, or, for not too large systems,
the results for each combination of the α and β

parameters can be stored in a direct access table.
Notice though that the number of entries of such
table would be O(3|S|) and the size of each of
them would be up to O(|S|log(|S)) because all the
transitions in the model would become symbolic.

6 VERIFICATION OF R-PCTL
This section extends the partial evaluation approach
to also cover rewards. Equations (2), (3), and (4)
in Section 3.2 formalize the semantics of the three
specification patterns used to express reward-related
properties.

Some of the mathematical procedures presented
in this section are based on the notion of expected
reward along a set of paths originating from a state
si. In Section 3.2 this value has been intuitively
defined as the sum of the rewards cumulated along
each of the paths, weighted by the probability for
that path to be taken. Since such a sum may contain
infinite terms, it could be unfeasible to compute it
directly from its definition.

Applying first-step analysis (Section 5.2.2), the
expected reward for a (non empty) path originating
in si can be computed by the following linear
equation:

ri = ρ(si)+ ∑
s j∈S

pi j · r j (23)

where ri is the expected reward over all the paths
originating in si

Notice from Equation (23) that if s j is an ab-
sorbing state and its state reward ρ(s j) is strictly
positive the equation has no finite solutions. Indeed,
in such a situation, for all the states from which s j
is reachable the expected reward would be infinite.
For this reason, we assume here that ρ(s j) = 0 for
all the absorbing states s j.

The following Section 6.1 discusses the verifica-
tion of unbounded formulae of the class R./r (♦φ),
while Section 6.2 will deal with the bounded oper-
ators I=k and C≤k.
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6.1 Unbounded Formulae
A formula R./r (♦φ) is true in a state si if the
expected cumulated reward before reaching a state
satisfying φ meets the constraint ./ r. To simplify
the exposition of an algorithm that computes it,
we will only discuss flat R-PCTL formulae, mean-
ing that in path formulae ♦φ , φ can only be a
Boolean combination of atomic propositions. The
extension to the nested fragment of R-PCTL can
be achieved by instrumenting the R-DTMC with
additional parameters according to the procedure
defined in Section 5.2.4 for nested PCTL formulae.

The expected cumulated reward over all the paths
satisfying ♦φ and originating in a state si can be
computed by constraining the linear system (23) to
the following boundary conditions:

ri =

{
0 if si |= φ

∞ if si ∈C∧ si 6|= φ
(24)

where C ⊆ S is the set of absorbing states of the
R-DTMC.

The rationale behind the boundary condition (24)
is intuitive: a state si satisfying φ is the last state
of a path π that satisfies the path formula ♦φ and
thus the end of the reward accumulation. On the
other hand, an absorbing state that does not satisfy
φ indicates a path that will never satisfy ♦φ and
thus contributes to the accumulation of rewards as
an infinite cost, according to definition (4).

The solution of (23) subject to (24) is a rational
polynomial expression whose unknowns are the
model parameters used to label transition probabil-
ities and state rewards. For the algorithms to solve
this system of equations and their complexity, the
reader may refer to Section 5.1.2. Summing up,
si |= R./r (♦φ) iff ri ./ r.

As an example of partial evaluation of an un-
bounded R-PCTL formula, let us consider require-
ment R6 in Table 1 for the running example in-
troduced in Section 4. Partial evaluation yields the
following expression:

X♦(7≤s≤9) = 0.21734375+0.084yx−0.084x

−0.21734375y−0.02165625z
+0.02165625yz

(25)

Before concluding this section, let us discuss
the special case of the cumulated reward before

absorption. This special case corresponds to the
computation of the expected cost of a run, regardless
of its termination in a success or failure state. Its
computation can be pursued either by modifying
the boundary conditions of Equation (24), imposing
ri = 0 for all the absorbing states (si ∈ C), or by
means of the following matrix algebraic procedure.

Assuming that for all the absorbing states si ∈C
ρ(si) = 0, a reward can only be accumulated by
the visits to transient states. From Section 3.1,
an entry ni j of the fundamental matrix N repre-
sents the expected number of visits to the transient
state s j before absorption, given that the process
started in si. Since after each visit to s j the reward
ρ(s j) is gained, let ρ be a column vector with
elements [ρ(s0),ρ(s1),ρ(s2), . . . ] and C ⊂ S the set
of absorbing states; the expected cumulated reward
before absorption can be computed by the following
equation:

X♦(si∈C) = N ·ρ (26)

Equation (26) is equivalent to (23) subject to
the boundary conditions (24) modified as previously
indicated:

r = ρ +Q · r

(I−Q) · r = ρ

r = (I−Q)−1 ·ρ

This equivalence between the matrix algebraic
formulation and the linear equation system (23)
allows the choice of the most convenient solution
algorithms for the execution environment at hand,
as will be discussed later in Section 10.

6.2 Bounded Formulae
A formula R./r (I=k) is true in a state si if the
expected state reward at time k meets the bound ./ r.
By definition, the expected value of the cumulated
reward can be computed as the sum of the rewards
associated with every state reachable in exactly k
time steps, weighted by the probability of reaching
it. The probability of reaching a state s j from a state
si in exactly k time steps is the entry (si,s j) of the
matrix Pk (see Section 3.1).

In a more compact way, let ρ be a column
vector with elements [ρ(s0),ρ(s1),ρ(s2), . . . ]. The
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expected reward X=k can be computed by the fol-
lowing equation:

XI=k = Pk ·ρ (27)

where an element XI=k [i] corresponds to the ex-
pected reward from state si. Hence, si |= R./r (I=k)
iff XI=k [i] ./ r.

A formula R./r (C≤k) is instead true in a state
si if the expected reward cumulated after k time
steps satisfies the constraint ./ r. For the previous
considerations, the expected reward gained at the
j-th step is exactly P j · ρ . Thus, to compute the
cumulated reward up to the k-th step with k ≥ 1
it is possible to apply the following equation:

XC≤k =
k−1

∑
j=0

P j ·ρ (28)

When k = 0, XC≤k = 0 by definition (3). Hence, for
all k > 0, si |= R./v (C≤k) iff XC≤k [i] ./ v.

As a final remark, notice that despite having a
logarithmic complexity in the order of the exponent
k, computing a large power of a matrix may be
computationally heavy, both in terms of time and
memory. On the other hand specific efficient so-
lutions have been introduced for equations of the
form of (27) and (28), such as [50, p. 121]. Matrix
power can also be easily parallelized, e.g., decom-
posing the matrix into blocks [45]. Alternatively,
the standard graph-based algorithms used by prob-
abilistic model-checkers for bounded properties can
be straightforwardly adapted to deal with parametric
probabilities and rewards [19].

7 SENSITIVITY ANALYSIS

Sections 5 and 6 described how to compute para-
metric closed formulae at design time that can be
used for an efficient run-time evaluation of system
properties, when the values of unknown parameters
become known. Interestingly, parametric formulae
also support a powerful reasoning tool called sensi-
tivity analysis. In this section we introduce, define
and exemplify sensitivity analysis for our context
referring, where necessary, to the running example
illustrated in Section 4.

Intuitively, sensitivity analysis is the process of
assessing how the value of a certain system property

is affected by changes in the values of its con-
stituents. This assessment may contribute to differ-
ent goals, such as:

• Support to decision making: when limited
resources are available for system improvement
(whether in terms of money or time) sensitivity
analysis may indicate the critical parts of the
system under analysis that have a more sig-
nificant impact on the satisfaction of system
requirements;

• Guidance to improvements: errors are more
likely to lead to global failures if they occur in
crucial parts of the system. Sensitivity analysis
can assign a degree of importance to each part
and guide designers towards a more detailed
and focused analysis;

• Maximization/Minimization of properties:
when optimizing with respect to a certain met-
ric of interest, sensitivity analysis may be used
to find values of system parameters that max-
imize or minimize the metric under analysis
(see Section 8);

Sensitivity analysis may be performed at design
time as well as at run time. At design time engineers
may use it to improve the design of the system. They
may exploit it to make informed decisions among
competing design choices. Alternatively, at run time,
the information gathered through sensitivity analysis
may support self-adaptation by prioritizing an ap-
propriate adaptation action among multiple possible
adaptation alternatives.

Sensitivity can be formalized as follows:

Definition 7.1 (Sensitivity) Let ω =
{ω0,ω1, . . . ,ωn} be the set of parameters of a
Markov model D, f : ω → R a function of ω

(corresponding to a quantitative property of D).
The sensitivity S of f with respect to ω is defined
as:

S( f ,ω) = (~∇ f )ω =

[
∂ f

∂ω0
,

∂ f
∂ω1

, . . . ,
∂ f

∂ωn

]
For a given set of operating conditions ω =
{ω0,ω1, . . . ,ωn} (i.e., the assignment of specific
values to the parameters of D), the partial derivative
∂ f/∂ωi evaluated in ω yields an insight into the
way f changes when ωi changes. More precisely, we
build a closed-form expression for sensitivity which
helps in identifying dangerous or desirable scenarios
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over all the parameters space. For example, it is
possible to rank the parameters ωi according to
the impact they have on f to understand which
parameter most significantly affects the satisfaction
of the system requirement represented by f .

An effective sensitivity analysis builds on top of
two fundamental assumptions. First, sensitivity is
just an indicator. Indeed, it does not account for fea-
sibility of a change. Second, the proposed approach
for sensitivity analysis is based on the assumption
that the parameters ωi are independent of each other.
This requires special care in modeling.

Let us consider as practical example requirement
R1 of our running application. By computing the
partial derivative of Equation (7) with respect to
the set of transition variables ω = {w,z,x,k,y} we
obtain the following sensitivity formulae:

∂ f/∂w =−0.7+0.7y−0.7yx+0.7x
∂ f/∂ z =+0.144375k−0.144375yk
∂ f/∂x =−0.7yw+0.7w
∂ f/∂k =−0.144375+0.144375z

+0.144375y−0.144375yz
∂ f/∂y =−1+0.7w−0.7xw

+0.144375k−0.144375zk

By considering the following set of operating con-
ditions:

ω = {w= 0.05,z= 0.3,x = 0.35,k = 0.05,y= 0.01}

we obtain the following results:

∂ f/∂w =−0.45045
∂ f/∂ z = 0.0071465625
∂ f/∂x = 0.03465
∂ f/∂k =−0.100051875
∂ f/∂y =−0.972196875

These results clearly indicate that, in these operating
conditions, a change of variable y’s value affects the
reliability of the system (i.e., requirement R1) more
significantly than changes to the other variables.
In the context of our example, this suggests that,
to increase the fault tolerance of the application,
we have to prioritize the actions that affect the
availability of the Web server. For instance, we may
decide to deploy more instances of this component.
In a similar way, sensitivity analysis may be applied
to other system requirements. For example, the sen-
sitivity of the system’s response time (requirement

R6) with respect to its parameters may be evaluated
by studying Equation (25).

The computed value of sensitivity directly de-
pends on the set of selected operating conditions
(i.e., the point in which the derivative is computed).
This dependence may be considered as a weakness
of sensitivity analysis. Indeed, a system with an ex-
tremely variable behavior may yield totally different
sensitivity results in different operating conditions.
However, this variability can be easily quantified
with Taylor’s theorem [51] that may be used as a
measure of confidence on the computed sensitivity
results.

Finally, it is important to notice that the sensitiv-
ity formulae we derive in our approach can also be
used for reverse sensitivity analysis, i.e. the identifi-
cation of operational conditions that are particularly
sensitive to specific parameters. Such information
could allow a designer to devise mechanisms that
keep the system in a “safe” operational region,
where its properties are less sensitive to uncertainty
or variability of external parameters.

8 THE LOW-POWER WIRELESS BUS
CASE STUDY

This section illustrates the application of the pro-
posed approach to a real-world embedded soft-
ware system from the Wireless Sensor Networks
(WSNs) [52] domain. The case study demonstrates
the need for a run-time efficient probabilistic verifi-
cation approach to support an implementation of a
WSN system that uses the communication protocol
Low-power Wireless Bus (LWB) [53]. The next
paragraphs are organized as follows: first we briefly
illustrate the LWB protocol, second we introduce a
R-DTMC model for an LWB node, and finally we
apply our approach pointing out its applicability and
practical advantages.

8.1 Description
LWB is a recently proposed WSN communication
protocol that turns a multi-hop low-power wireless
network into an infrastructure similar to a shared
bus, where all nodes are potential receivers of
all data. It achieves this by mapping all traffic
demands on a type of fast network floods (i.e.,
transmissions of packets from an originator node
to all other nodes in the network). As a result,
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LWB inherently supports one-to-many, many-to-
one, and many-to-many traffic. LWB also keeps no
topology-dependent state, making it more resilient
to link changes due to interference, node failures,
and mobility than prior approaches. More precisely,
as illustrated in [53], LWB maps all communication
on fast Glossy floods [54]. A single flood serves to
send a packet from one node to all other nodes. To
avoid collisions between floods, LWB uses a time-
triggered operation: nodes communicate according
to a global communication schedule that determines
when a node is allowed to initiate a flood.

The protocol operates within communication
rounds that repeat with a round period T computed
at the host (i.e., a sensor node acting as leader
of the network) and based on the current traffic
demands. Every round consists of a number of non-
overlapping communication slots. In each slot, at
most one node puts a message on the bus (i.e.,
initiates a Glossy flood), whereas all other nodes
read the message from the bus (receive and relay
the flood). A round starts and ends with a slot al-
located by the host to distribute the communication
schedule. Thus each round contains, for redundancy
reasons, two copies of the schedule. The schedule
includes the round period T and the mapping of
individual nodes to the following data slots. The
detailed description of the protocol is beyond the
scope of this paper and can be found in [53].

The efficiency of WSN applications significantly
depends on the efficiency of their communication
protocol. The configuration parameters of each com-
munication protocol have to be tuned according to
the application demands and operating conditions.
In particular, in this specific class of systems, energy
efficiency is the main aspect that drives parame-
ter configuration. In the case of LWB, application
designers may choose among different values for
the period T in the allowed range: 1000ms≤T ≤
60000ms.

LWB has a startup phase, which synchronizes
each node with the LWB host and occurs when a
new node joins the network and each time a node
misses more that three consecutive schedules. Since
this phase may have severe impact on energy con-
sumption, the protocol designer carefully tries to op-
timize its behavior. Different values of parameter T
lead to significantly different performance in terms
of consumed energy. In addition, an a-priori choice
of T at design-time is not necessarily the most

TABLE 2: Cost/reward structures for the LWB
model in Figure 4. Each reward represents the
energy consumption expressed as the worst case
radio on time in ms.

State Energy Consumption

Be (T-1000)
Bb 1000
Re 35
Rb 145
Se 19

appropriate strategy to achieve an energy efficient
startup synchronization since the most convenient
value depends on the specific execution conditions.
Values of T close to the maximum are in general
appropriate (i.e., they provide a lower overall energy
consumption). However, high values of T also imply
an increased amount of energy required for the
startup node synchronization. The trade-off between
high and low values of T directly depends on the
reliability of communications among nodes. An a-
priori choice made at design time would not be a
good solution. A seamless and continuous run-time
adaptation of value T would instead be necessary.

8.2 Modelling LWB nodes
The choice of an appropriate value for period T that
minimizes the energy required for the startup syn-
chronization of LWB applications can be performed
by exploiting a probabilistic model that captures
the energy consumption of the nodes. Figure 4
shows the parametric R-DTMC of an LWB node as
described in [55]. The variable label ps in this model
represents the probability for the node to receive a
schedule that was sent by the host. Justifying the
assumptions and accuracy of this model is beyond
the scope of our paper; these details can be found
in [55].

Starting from the R-DTMC model in Figure 4 we
can extract an absorbing R-DTMC that focuses only
on the states involved in the initial synchronization.
This second R-DTMC, reported in Figure 4, is also
augmented with the cost/reward structure detailed in
Table 2. The reward structure associates each state
with the (worst case) time in milliseconds for which
the LWB node has the radio switched on.

As we said, the goal is to choose high values
of T, but also define an upper bound to constrain
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Fig. 4: Parametric Markov chain model of an LWB node, taken from [55]
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Fig. 5: Absorbing Parametric Markov chain model
of the startup synchronisation of an LWB node

the energy consumption in the startup phase. The
following requirement RLWB expresses the goal:
The startup radio on-time should be as close as
possible, but less than 10s. The value of the radio
on-time period can be queried on the model at
design time using, for example, the PRISM model
checker after setting a value for ps. The query to
submit is R =?(♦s = sb). By choosing different
values for ps, a designer can explore how different
values of T produce distinct startup energy con-
sumptions and can choose an appropriate period
T given an expected value for ps. It is easy to
realize that some values for T are appropriate in
some operating conditions but invalid in others. For
example considering an expected ps equal to 0.8
and setting T to 5600s yields a worst case radio
on-time of 9.9s that satisfies requirement RLWB.
In a scenario of less reliable communications (i.e.,
ps = 0.6) the same value of T produces instead a
worst case radio on-time equal to 24s, which clearly
violates the requirement. Thus, the choice of T may

be conveniently postponed to a run-time adaptive
algorithm that adapts to the changing operating
conditions.

To compute at run-time the most appropriate
value for T we need to periodically evaluate re-
quirement RLWB considering the current value of
ps. Deploying a probabilistic model checking engine
on a WSN node is however out of question, since
nodes are severely constrained in terms of storage
and computational power. As an example, the ultra
low-power wireless sensor modules TMote Sky6 are
equipped with a 8MHz microcontroller, 10k RAM
memory, and 48k of flash memory. In addition, the
energy saved by the run-time adaptation of T would
be compensated by the energy spent to periodically
run the model checking engine. Furthermore, WSN
applications typically have strict timing require-
ments to self-adapt, which would not be compatible
with traditional probabilistic verification techniques.
The WM approach comes into play to overcome
these obstacles.

The WM pre-computation step of R =?(♦s = sb)
produces the following symbolic expression:

fRLWB(T, ps) =
−1000p3

s +1035p2
s −855ps +T

p3
s

(29)

The WM verification step is a fast and inexpen-
sive computation that can be easily performed by
a sensor node. Given a value for ps estimated at

6. http://www.crew-project.eu/sites/default/files/
tmote-sky-datasheet.pdf
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run-time7, the LWB host can compute the symbolic
expression with respect to the desired requirement
(i.e., fRLWB(T, ps) < 10.000), obtaining the desired
value for period T . In the case of the TMote Skyby
sensor modules formula (29) can be evaluated in
less than 1ms.

9 RELATED WORK

Quantitative verification at run time is necessarily
subject to strict time constraints [11]. Although
verification procedures can be efficient enough for
certain application domains [56], [12], traditional
techniques were conceived for design-time analysis
and therefore they are usually not acceptable in
terms of time consumption [57].

Improving the efficiency of the current model
checkers has long been one of the goals of the
research community. Some approaches have been
proposed to tackle the specific issues of run-time
analysis. In this section, we discuss related work
by grouping contributions in three classes: incre-
mental analysis, parameter space exploration, and
parametric model checking.

9.1 Incremental Verification
Incremental approaches are in general characterized
by two steps: (1) localize the impact of a change in
the artifact, and (2) reuse saved results from previ-
ous analyses to avoid unnecessary re-computation.

Incremental analysis approaches for non-
probabilistic systems have been proposed to
improve the generation or the exploration of the
state space of the model by identifying which
previous results are still valid after a change and
which have to be re-computed [58], [59], [60],
[61], [62], [63].

Only few papers have been published on in-
cremental quantitative verification of probabilis-
tic models; e.g.,[64], [65]. This work focuses on
discrete-time Markov Decision Processes (MDPs)8,
a superset of R-DTMCs, and reachability prop-
erties. In the target usage scenario for this tech-
nique, the model has to be re-analyzed after (a
few) transition probabilities change. As a first step,
the Markov model is partitioned into its maximal

7. The host easily estimates ps by exploiting the sequence number
attached to messages; see [55] for more details.

8. An MDP can be roughly seen as R-DTMC augmented with the
possibility of non deterministic transitions [19].

strongly connected components (SCCs). Roughly
speaking, SCCs can be analyzed in isolation and
then the local results can be combined to obtain
the probability of reaching the target states. When a
change occurs, the set of the SCCs that are directly
affected is generated. Then, a search algorithm is
applied to identify all the SCCs indirectly involved.
This search algorithm is based on a convenient
topological order of the SCCs. Specifically, let C
be an SCC and let Pre∗(C) ⊆ S−C be the set of
states from which C is reachable; let us also assume
that any of the target states is reachable from C.
A change in the transition probabilities included
in C may affect the probability of its predecessors
to reach the target, but not its successors. This
observation supports an efficient search strategy
that goes through a model’s SCCs and re-analyzes
only those which may have been affected by the
change. Furthermore, this analysis procedure is also
parallelizable, thanks to the partial ordering among
the SCCs: at any step an SCC can be processed
independently of the others as long as its successors
have been analyzed. An explicit application to run-
time verification of this approach has been presented
in [66]9.

Compared to our approach, [64], [65] provides
a higher flexibility on the structure of the DTMC,
since virtually any change is allowed. On the other
hand, the benefits of incrementality heavily depend
on the topology of the system and the localization
of a change, providing no guarantee on the required
verification time. Moreover, it does not support
nested formulae.

The approach introduced in [68], ∆ evaluation
for reliability analysis, is concerned with incre-
mental reliability analysis based on conveniently
structured DTMCs. The structure of these models
follows the proposal of [28], where each software
module (represented by a state of the DTMC) can
either transfer control to another module, fail by
making a transition toward an absorbing failure
state, or complete the execution by moving toward
an absorbing success state. Assuming that a single
entry of the transient-to-transient transition sub-
matrix Q changes, there is no need to re-compute
the reliability of the entire system from scratch, but
a few arithmetic operations can be used to correct

9. This approach also supports a speedup in the first analysis, as
shown in[67]
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the previous reliability value. Despite its efficiency,
∆ evaluation can only deal with a single change at
a time in the matrix Q and does not provide support
neither for generic DTMC models nor for general
PCTL properties, but only for the reachability of
a specific absorbing state 10. Compared to our
approach, [68] requires a special structure of the
DTMC, tailored to reliability analysis. In terms of
computation time, it saves the design-time burden
of computing the parametric formulae but does not
provide substantial improvements at run time.

Finally, [69] reports some preliminary results of a
novel approach to incremental quantitative analysis
of software artifacts. The approach is based on the
syntactic structure of the artifact being analyzed
and the verification procedure is formalized via
an attribute grammar. Both parsing and attribute
evaluation after each change are managed by incre-
mental algorithms. This approach has been applied
to incremental reliability analysis of workflow lan-
guages [70], and in [38] for more general quantita-
tive analysis of structured languages. In principle, it
provides higher flexibility, allowing not only param-
eters but also the model structure to change at run
time. However, there is still no evidence that the
method would lead to an improved efficiency for
specific classes of models (e.g., Markov processes)
and properties (e-g-, PCTL).

9.2 Parameter Space Exploration
The approaches described in this section reverse the
perspective of verification: instead of checking if a
parametric Markov model satisfies a PCTL property
φ , they try to synthesize the set of parameter evalu-
ations that make the model satisfy φ . Though these
techniques were not explicitly designed for run-time
analysis, their application is straightforward since at
design time they can in principle explore the whole
parameter space and store in a convenient lookup
table all the evaluations that make the model satisfy
φ . This way, when a change occurs at run time,
a quick access to the lookup table can provide an
immediate answer to the verification problem.

In [71], given a parametric MDP and an evalua-
tion of the model parameters, the procedure resolves
all the non deterministic choices to their optimal
combination, i.e., one that maximizes the probability

10. Notice that at least two absorbing states are required for the
approach to work correctly [68]).

of reaching a set of target states for that evaluation.
This combination is called an optimal schedule.
When the optimal schedule is found for a specific
evaluation, the parameter space is explored start-
ing from the given evaluation until the maximum
bounded region is found for which the scheduler is
still optimal.

The approach introduced in [72] can instead deal
with the entire PCTL, still verified on MDPs. The
parameter space is divided into hyper-rectangles
such that all the elements of a hyper-rectangle
either satisfy the desired property or they refute it.
The approach is iterative and keeps partitioning the
search space until a minimum size for the regions is
reached. Since it is in general impossible to cover
the parameter space by hyper-rectangles, a part of
it may remain undecided. Hence the verification
procedure is not complete.

Being MDP models (augmented with a reward
structure) a superset of R-DTMCs (the latter having
only one possible action per each state), the previ-
ous techniques can also be applied to R-DTMCs.
Despite their generality, however, parameter space
exploration approaches suffer from some limitations
compared to our approach. First, the complexity of
exploring the parameter space is in general expo-
nential in the number of parameters, though several
heuristics can be applied to speed it up in practice
(e.g., [73]). This can make design-time computation
unfeasible, even for models with few parameters.
Second, the storage of a large number of parameter
regions corresponding to the satisfaction of a certain
property can be an issue.

9.3 Parametric Model Checking
The class of parametric model checking approaches
includes our approach and is essentially based on
the pre-computation at design time of a closed-
form expression corresponding to the satisfaction
condition of the desired quantitative property. The
first approach for parametric model-checking of
DTMCs has been proposed by C. Daws in [74].
The main contribution of this seminal work is the
synthesis of parametric closed formulae through a
state elimination algorithm, similar to the one used
in automata theory to synthesize regular expressions
from finite state automata [75]. The same algo-
rithms has been previously introduced in the field
of stochastic control theory, though with a different
perspective (see e.g., [76] pg. 114).
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More precisely, Daws’ algorithm computes a
closed stochastic expression corresponding to a flat
reachability property. The length of the expression
has been proved to be, in the worst case, O(nlog(n))
(n being the number of states) [74]. In its orig-
inal formulation, Daws did not provide support
for rewards. An efficient implementation of Daws’
algorithm presented in [77], [78], [79] combines
state space reduction techniques and early evalua-
tion of the regular expression to improve the actual
execution time when only few variable parameters
appear in the model. The improvement in [78]
requires n3 algebraic operations among polynomi-
als, performing better than [74] in most practical
cases, although still leading to an O(nlog(n)) long
expression in the worst case. The approach in [78]
has been implemented in the tool called PARAM.
This tool also supports verification of flat reward
properties. Concerning expressiveness, the approach
we describe in this paper provides support for the
full PCTL, while Daws’ algorithm only deals with
reachability. PARAM could represent an alternative
to our approach for the verification of reachabil-
ity properties. For this reason a deep comparison
between the efficiency of the two tools on the flat
reachability fragment will be reported in Section 10.

9.4 Sensitivity Analysis

Sensitivity analysis has been performed accord-
ing to Definition 7.1 in several research contribu-
tions. In [28], an analytical procedure is provided
for DTMC-based reliability analysis of component-
based systems. Reliability is formalized as the prob-
ability of reaching an absorbing “success” state
of the DTMC. Sensitivity is then computed with
respect to the failure probability of each component,
by algebraic operations on the transition matrix. A
similar approach is presented in [80], where the
sensitivity is computed not only for reliability but
also for response time. In [81] and [82], reliabil-
ity analysis is extended to also deal with error
propagation among components, and sensitivity of
system’s reliability is computed with respect to
the probabilities that a component experiences an
unrecoverable failure or introduces an error in the
data-flow that is propagated to other components.
Besides sensitivity analysis, perturbation analysis
can be used to quantify the impact of applying small
variations to a model parameter on the satisfaction

of a global property. Perturbation analysis is mostly
performed through Monte Carlo simulations. While
established in several engineering disciplines, it
has been recently applied to Software Engineering,
e.g., in [83]. By relying on our approach, which
generates closed-form expressions corresponding to
quantitative properties, the computation of sensitiv-
ity is significantly more efficient at run time.

10 EMPIRICAL EVALUATION

This section discusses a set of experiments con-
ducted to empirically assess the design-time effort
required by the approach described in this paper,
which has been implemented by the WM toolset.
To provide a basis for comparison, the same test
cases have been also analyzed through the PARAM
model checker [79], which can be considered as the
direct competitor for reachability formulae.

All the test cases have been generated randomly
and are well-formed models. The algorithm used for
the generation is available online11, as well as the
full data set for the experiments. Each test case in
the data set is identified by the seed used to initialize
the random generator, to make all the experiments
replicable.

Each test case has exactly two absorbing states
and five outgoing transitions from each state. The
properties analyzed in the tests are only of the
forms P=?(�φ) and R=?(�φ), where φ uniquely
identify one of the absorbing states. These types of
properties have been chosen for two reasons: first,
they stress the core routines for all the unbounded
properties (see Sections 5 and 6); second, they
can be analyzed also by PARAM, which does not
support the full R-PCTL.

In the comparison, we used PARAM version
1.8, which runs on 64 bit processors. The binary
distribution has been downloaded from the official
website12. By default, PARAM uses a bisimulation
preprocessing to reduce the size of the input model
[84]. Since the focus of the comparison is on the
verification algorithms only, and considering that the
same preprocessing can be applied in our case too,
bisimulation has been disabled by using the “–no-
lump” flag on command line invocation of PARAM.

11. http://www.antonio.filieri.name/publications/preprints/
2015-tse/

12. http://depend.cs.uni-saarland.de/tools/param
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The execution time for PARAM is reported as mea-
sured by the tool itself, launched with the statistics
flag enabled.

The WM toolset consists of a Java preprocessor
that takes as input the DTMC model and the target
states to be reached and produces a Maple code
implementing the algorithms defined in the previous
sections. The expression computed in Maple can
then be directly exported to either Java or C code.
The execution time of the Maple implementations
of the WM algorithms has been measured using the
time[real]() built-in function to record the start and
the end of the execution, according to the official
directives of the tool. The execution time reported
here does not include the set-up of the tools, which
is anyway independent of the specific instances and
negligible with respect to the analysis time. The
execution environment for all the experiments is
a Dual Intel(R) Xeon(R) CPU E5530 @ 2.40GHz
with 8 Gb of ram, running GNU Linux Ubuntu
Server 11.04 64bit. All the tests reported in this
section did not overrun the available memory.

The first set of experiments analyzes the perfor-
mance of the matrix-based algorithms with respect
to the number of states and the number of model
parameters. The results are reported in Section
10.1 and compared with PARAM. The second set
of experiments analyzes the design-time efficiency
of the equation based algorithms with respect to
the same problem dimensions, by comparing the
WM implementation both with PARAM and with
the built-in solver of Maple 15; the results are
discussed in Section 10.2. In Section 10.3, a set
of experiments has been conducted to stress the
current implementation of the WM and to provide
an empirical assessment of its execution time with
larger models. Finally, in Section 10.4 runtime per-
formance of the WM approach is compared with
well-established tools for probabilistic verification,
to provide evidence of the run-time speedup.

10.1 Matrix-Based Algorithms

Matrix-based algorithms enjoy the benefit of split-
ting symbolic and numeric computation. The for-
mer, being based on Laplace expansion, has an
exponential complexity in the number of parametric
states. After the expansion, the determinants of a
large number of numeric sub-matrices have to be
computed. While established numeric solutions can
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Fig. 6: Matrix based approach: average execution
time (s) vs number of states / number of parameters.
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Fig. 7: Matrix based approach: maximum execution
time (s) vs number of states / number of parameters.

scale to very large sub-matrices [45], storing these
intermediate sub-problems is memory demanding,
especially for sequential computation environments.
Parallelization can be leveraged to increase scalabil-
ity, but this is out of the scope of this evaluation.
For these reasons we limit the size of the test
models to 30 states, as well as to 30 symbolic
states, to make the experiments feasible within the
memory bound of the execution environment, which
is sequential. For every configuration pair (number
of states, number of parameters), we analyze 50
randomly generated cases.

Figure 6 reports the average execution time for
the test suite, while Figure 7 reports the maximum
execution time. The choice of reporting both the
average and the maximum execution time is due to
the high variance of the results. Indeed, model topol-
ogy affects the actual execution time in way that is
hard to predict. Recalling the algorithm of Section
5.1.1, specific topologies may reduce the number of
non zero cofactors, speeding up the actual execution
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time. This phenomenon is intuitively more relevant
in the case of a large number of model parameters,
because Laplace expansion of the parametric rows
leads to smaller numerical cofactors; due to the
sparsity of the matrix, such small cofactors are more
likely to be trivially singular (having determinant
equal to zero), and this condition is efficiently
identified by Maple. On the other hand, the relation
between the average and the maximum execution
time seems to be essentially linear. In particular,
the worst cases take at most twice the time of the
average cases. All the samples have been analyzed
in reasonable time (< 6 minutes), though the largest
ones almost saturate the available memory (< 8Gb).
The growth of execution time is quite regular, with
respect to both the number of states and the number
of parameters.

The theoretical complexity described by Equation
(12) is empirically verified in Figure 8. The x-axis
corresponds to the complexity index O1 = τc · (n−
c)3 computed for each sample set (τ is the average
number of transitions originating in a state, set in
our experiments to 5; n is the number of states of
the model; c is the number of states having at least
one parametric outgoing transition).

The polynomial fitting of the empirical data with
respect to the complexity index O1 yields the fol-
lowing relation:

17.686+1.4706 ·10−6 ·O1

with a correlation between the estimated mode and
the data set of 0.93103 and the determination index
R2 equal to 0.8668113.

The verification of the same sample cases with
PARAM was not always possible because the exe-
cution time of the model checker when the mod-
els contain more than 10 parameters drastically
increases. Considering the execution time of the
matrix-based algorithms reported above, all the runs
of PARAM taking more than 5 hours have been
interrupted. For this reason Figures 9 and 10 have
the y-axis truncated at 10.

By looking at Figures 9 and 10, three obser-
vations can be made. First, the execution time of

13. In statistics, R2 is a quality index for models whose main
purpose is the prediction of future outcomes on the basis, in this
case, of the measured execution times. For its use in this section,
R2 ∈ [0,1] and a perfect fitting between them model and the data
would correspond to R2 = 1.
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Fig. 8: Matrix based approach: empirical validation
of the complexity assessment in (12).
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Fig. 9: PARAM: average execution time (s) vs
number of states / number of parameters.

the matrix-based approach is significantly lower
than the execution time of PARAM, both in the
average and in the worst case. Second, there is a
higher variability in the execution times of PARAM
verifications, as evidenced by the ratio between the
maximum and average value for each sample set
(up to 360). Third, there is a monotonic trend of
the execution time of PARAM with respect to the
number of parameters, but this is not the case for
the number of states, at least in the average case
(see Figure 9).

10.2 Equation-Based Algorithms
In this section, the equation-based algorithms de-
fined for the WM approach are compared with both
PARAM and the solution of the linear equation
systems by means of the built-in solver provided
by Maple 15. Due to the high variability observed
in the result sets of the three analyzers, the plots in
this section report both the average execution time,
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Fig. 10: PARAM: maximum execution time (s) vs
number of states / number of parameters.

as a thick black line, and the maximum measured
execution time, as a dashed thin line.

Figure 11 refers to the reachability of an ab-
sorbing state. All the input models have exactly
5 parametric transitions. Each data point repre-
sents the average and maximum execution time of
25 samples, respectively. The three tools provide
reasonable performance, though the WM and the
Maple built-in solver are quite faster. There is also
a regular monotonic trend in the performance of the
equation-based procedures, while PARAM presents
a higher variability. The minimum value of the
average execution time curve of PARAM, not easily
readable in the scale of Figure 11(c), is 0.13s,
significantly larger than the other two approaches
for the same input size.

Figure 12 shows again the results of analysis of
the same reachability property, but for random input
models having exactly 10 parametric transitions. As
before, 25 samples per point have been analyzed.
In this test suite the performance of the three tools
is no longer comparable, with the equation based
solvers running in seconds, while PARAM takes up
to 5 hours (with minimum value for the average
execution time curve of 137s, not easily readable in
the figure’s scale). Furthermore, for models larger
than 80 states (shadowed in Figure 12), PARAM al-
ways takes more than 5 hours and the corresponding
records have been discarded; this is the reason for
the 0 execution time reported on the graphs.

Figure 13 shows the execution time of the three
solvers analyzing the property R=?(♦φ), again with
respect to the number of states of the input models.
Each input model has exactly 7 parameters, 2 of
which are parametric rewards; 1 absorbing state;
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Fig. 11: Execution time vs number of states:
flat reachability, 5 parametric transitions (the thin
dashed line represents the maximum execution time
while the think continuous line the average execu-
tion time).

5 outgoing transitions for each transient state. For
each input size, 50 samples have been taken.

Figures 11, 12, and 13 show the difference in
performance of the three solvers. In particular, the
plotted experimental data indicate that WM and
the Maple built-in solver outperform PARAM. With
100 states and 10 parameters PARAM takes almost
always more than 5 hours to verify the reachability
property. The equation based solvers can perform
the same tasks in tens of seconds. On the other hand,
no significant differences can be noted between the
Maple built-in solver and the WM implementation
at this level of complexity of the input models. In
the next section the two equation based procedures
will be stressed with more complex models in order
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Fig. 12: Execution time vs number of states: flat
reachability, 10 parametric transitions (the thin
dashed line represents the maximum execution time
while the think continuous line the average execu-
tion time).

to show the benefits of the WM implementation.

10.3 Empirical Complexity of the WM Im-
plementation
In this section a set of complex input models are
analyzed to compare the performance of the Maple
15 built-in solver and the WM implementation.

Figures 14 and 15 show the results of analysis
with the two equation-based solvers for a set of
input models with 100 states and 5 outgoing tran-
sitions per state. The property under analysis is a
flat reachability formula. Each point of the plots
corresponds to 100 samples. The WM implementa-
tion significantly outperforms the built-in solver of
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Fig. 13: Execution time vs number of states: cumu-
lative reward, 5 parametric transitions, 2 parametric
rewards.

Maple: the former never took more than 5 minutes,
while the latter ran for more than 4 hours in the
worst case. Hence, the fill-in reduction strategies
adopted for the WM implementation proved to be
effective in speeding up partial evaluation. The two
figures also show that though the average execution
time is monotonically growing, the maximum exe-
cution time does not have a regular trend. This issue
is evident for the larger models, where the impact
of topology is not negligible.

We made additional experiments to further stress
the WM implementation and empirically assess the
actual performance of the tool (which is notably
less than the one expected from the worst case
analysis of Section 5.1.2). Figure 16 shows the
results of analysis for a flat reachability formula
and a set of input models with 200 states and 5
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Fig. 14: Stress test of the Maple built-in solver: 100
states, up to 45 transition parameters.
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Fig. 15: Stress test of the WM implementation: 100
states, up to 45 transition parameters.

outgoing transitions per state. Each point of the plots
corresponds to 25 samples.

10.4 Runtime Performance
Before concluding this section, Figure 17 provides
a quantitative glimpse of the benefits achievable at
run time by using the WM approach (the verification
time is reported in logarithmic scale).

The evaluation time of the closed-form expres-
sions produced by WM is reported in compari-
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Fig. 16: Stress test of the WM implementation with
200 states and up to 100 parameters.

son with two popular model-checkers, PRISM [85]
v4.0.2 and MRMC [14] v1.4.1.Concerning the ex-
ecution time of PRISM, only the model-checking
time is reported, as measured by the tool itself;
the model construction time is not considered [85].
All the tools have been required to produce results
with an accuracy of at least 10−15 and have been
executed with their default configuration.The exe-
cution environment is the same as described for the
previous experiments.

The test suite is composed by 128 randomly
generated DTMCs, having 50 to 500 states (with
step 50), two absorbing states, and a normally
distributed number of outgoing transitions per state
with mean 10 and standard deviation 2. The number
of variable states is 4 in each model, thus the
number of parameters of each model is normally
distributed with mean 40 and standard deviation 8.
The formulae computed in Maple for the WM have
been encoded into C functions and compiled14. The
property to verify is reachability of one of the two
absorbing states.
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Fig. 17: Runtime performance of the WM compared
with MRMC and PRISM.

A thorough discussion of the performance time of
each of the tools is out of the scope of this paper,
only a few observations follow concerning the issues
of bringing those verification tools at run time.

Both PRISM and MRMC show a fast-growing
empirical complexity with the size of the model.
PRISM seems slower than MRMC. This is most
likely due to the nature of the models and the
property at hand; indeed the PRISM symbolic en-
gine provides a higher speedup in presence of more

14. C has been preferred to Java because the latter has a limitation
in the size of a method’s body that could create problems with long
mathematical expressions.
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complex properties and larger models [85]. On the
other hand, MRMC, thanks to its fast explicit state
algorithm is quite efficient on this class of problems.
The execution time of the two tools is overall
reasonable for many applications [11], [12], though
their performance is order of magnitudes higher than
the WM approach and prevents their use for run-
time verification in highly dynamic environments.

The WM execution time at runtime, i.e. the eval-
uation of the closed-form expression produced by
the design-time partial evaluation discussed before
in this section, is shown in Figure 17. Despite the
different size of the input models, the runtime of
WM is close to constant in these experiments, since
the complexity of the parametric expressions mostly
depends on the number of parameters rather than the
size of the model. Indeed, it is far more efficient
in general to evaluate a closed-form expression
than solving a system of equations. Finally, notice
that also run-time sensitivity analysis described in
Section 7 requires the evaluation of a closed-form
expression and can thus it be accomplished within
similar time complexity.

10.5 Discussion

Hereafter we briefly summarize the main lessons
learned both from the validation presented here and
from our experience in using WM in practice.

Choosing the right method. A choice has to
be made between matrix-based and equation-based
methods for the design-time stage of WM. The num-
ber of parametric states is the discriminating factor
between them. A matrix-based implementation can
handle very large systems with a small number of
parameters, described by a large transition matrix
where only a few rows contain symbolic values.
Matrix-based methods split the computation into a
symbolic phase and a numeric one. The latter can
be then performed through state of the art math-
ematical engines or routines, able to handle very
large matrices (in the order of millions or rows).
Both the symbolic and the numeric parts of this
approach are straightforwardly parallelizable, thus
this approach can be preferred if a parallel execution
environment is available. Equation-based methods
should be preferred on non parallel environments
when the number of parametric states is large,
which would make the symbolic computation part
of matrix-based approaches too expensive. Finally,

the equation-based solver we implemented for WM
is optimized for sparse systems, since we expect
for DTMC models of a software behavior that each
state interacts directly with only a few other states.
If the DTMC under analysis is instead dense, other
solvers may provide better performance.

Nested formulas. The approaches defined for
analyzing nested PCTL formulas cover the full
PCTL. However, since they require the introduction
of additional parameters, these approaches may be
too expensive in terms of memory and execution
time as the number of model states grows. The max-
imum size of the model depends on the available
computational resources both at design-time and at
runtime. At design-time, a parallel execution of the
matrix-based algorithms can reduce the demand for
each computation node both in terms of time and
memory, though the total number of operations is
still exponential in the number of states. At run
time, depending on the topology of the model,
the expression to evaluate may have a number of
terms in the order of O(nlogn), where n is the
number of states. If the number of states is very
large, evaluating such expression may require a non-
negligible time, especially on low-power devices (as
in the case of Section 8), and a large amount of
memory to be stored. This restricts the practical
verification of nested formulas to relatively small
models.

Numerical issues. The parametric formulae pro-
duced by the partial evaluation stage of WM are
rational polynomials. The length in number of terms
of these polynomials depends on the number of
parameters and the topology of the DTMC. To
cope with numerical problems, WM uses infinite
precision rational numbers for its internal computa-
tions. This conservative choice aims at guaranteeing
the accuracy and correctness, at the cost of higher
time and memory utilization during the design-time
partial evaluation. However, translating the paramet-
ric formulas into a standard programming language
requires additional considerations. First of all, most
of the programming languages do not provide native
support for rational numbers. This can be added
through a variety of libraries, which may lead to
increased complexity at run time, especially for
low power devices. For our experiments, we gen-
erated C code and rational numbers were approx-
imated by floating-point representations. However,
for large and complex formulas this translation is
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not trivial. The first issue to consider is numerical
stability. Indeed, different equivalent forms of the
same expression may perform differently in terms
of stability [45]. This problem is well known and it
is recommended to transform long formulae before
implementing them in a specific programming lan-
guage. Maple provides a code generation function
able to optimize the representation of the formula
for several programming languages, including C.
This optimization consider both numerical stability
and time for evaluation, and is the one used by
WM. Additionally, most of the compilers can further
optimize a mathematical expression for a specific
instruction set. For specific applications, ad-hoc
representation of the formulas can be designed as
a trade-off between accuracy and evaluation time
(especially when the computation is carried on low
power devices, e.g., embedded systems).

State space reduction. Our WM implementa-
tion may further improve its performance by in-
corporating state space reduction algorithms. Sev-
eral techniques have been proposed in the field of
probabilistic model checking to reduce the size of
the model to be analyzed in presence of specific
regularities or symmetries (e.g., [86], [84]). Certain
techniques perform according to given target prop-
erties, while others are general for fragments or the
full PCTL. These techniques are used by state of
the art model checkers to preprocess the models
for simplifying the subsequent analysis. Whenever
they can cope with symbolic parameters, these tech-
niques can be used to preprocess the models before
applying WM. A notable example is bisimulation
reduction, already used by PARAM, which can be
implemented for WM too. Bisimulation has been
shown to be effective in reducing the number of
states of large models having a variety of regularity
patterns in their structure [84]; however, in general,
it cannot reduce the number of different parameters
and preserves the model semantics only with respect
to reachability properties. The result of bisimulation
is another DTMC having a possibly smaller number
of states, but, in general, the same number of
parameters.

Modeling software behavior. Without loss of
generality (see Section 3.1), in this work we focus
on absorbing DTMCs. One might wonder whether
and how this choice limits in practice the model-
ing activity. Absorbing DTMCs have been widely
adopted in the area of software to verify proba-

bilistic properties of abstract workflows [25], [36],
[87], [56]. As already mentioned, these verification
problems can be transformed into equivalent ones
on corresponding well-formed DTMCs [19]. They
naturally fit the case where a notion of “final”
conditions exists in the behavior of the software,
for example the completion of the execution or
the occurrence of a non-recoverable exception or
failure, or a round of a (quasi-)periodic behavior.
The model is used to represent an abstract run of the
application and the notion of final condition applies
to such run. For example, the DTMC in Figure 3
describes the behavior of the Web application for
a generic user session. Each of these sessions may
either incur in non recoverable errors (e.g., a failed
authentication) or terminate.

11 CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach to run-
time quantitative verification and sensitivity analy-
sis, developed to support self-adaptive software. The
proposed approach relies on the efficient verifica-
tion of quantitative probabilistic temporal properties
on Markov models, exploiting a pre-computation
step performed at design time and delaying the
evaluation of simple verification conditions that
depend on variable parameters to run time. Run-time
verification of the residual verification conditions
can be performed very efficiently (often in constant
time) and can even be performed on low-power
devices, such as mobiles devices. In the paper we
discussed the mathematical foundations of the pro-
posed solution and we compared the obtained results
with the existing competing alternatives, showing a
substantial improvement in terms of efficiency.

Our future work will continue on widening the
foundations of dependable self-adaptive systems.
We will work on extending the techniques dis-
cussed here to Markov Decision Processes and
Continuous Time Markov Chains. In addition we
plan to improve the WM tool and implement the
solution algorithms also for open-source mathemat-
ical environments. We also plan to improve the
tool by adopting ad-hoc pre-processing stages for
state space reduction: e.g., bisimulation [84], partial
order reduction [88], and SCC decomposition [67].
Finally, the WM approach has been used as enabling
feature to bring control theoretical adaptation mech-
anisms for self-adaptive software with promising
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results [89], [90], and we plan to exploit it to
enhance automated model learning and controller
synthesis techniques for software systems abstracted
through DTMC models [91].
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