76 research outputs found
Revisiting \u3csup\u3e228\u3c/sup\u3eTh as a Tool for Determining Sedimentation and Mass Accumulation Rates
The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (\u3c15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation. When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th
Identification and quantification of diffuse fresh submarine groundwater discharge via airborne thermal infrared remote sensing
Airborne thermal infrared (TIR) overflights were combined with shoreline radionuclide surveys to investigate submarine groundwater discharge (SGD) along the north shore of Long Island, NY between June 2013 and September 2014. Regression equations developed for three distinct geomorphological environments suggest a positive linear relationship between the rate of diffuse SGD and the spatial extent of the observed coastal TIR anomalies; such a relationship provides quantitative evidence of the ability to use TIR remote sensing as a tool to remotely identify and measure SGD. Landsat TIR scenes were unable to resolve any of the 18 TIR anomalies identified during the various airborne overflights. Two locations were studied in greater detail via 222Rn time series and manual seepage meters in order to understand why specific shoreline segments did not exhibit a TIR anomaly. SGD at the first site, located within a large, diffuse TIR anomaly, was composed of a mixture of fresh groundwater and circulated seawater with elevated levels of nitrate. In contrast, SGD at the second site, where no coastal TIR anomaly was observed, was composed of circulated seawater with negligible nitrate. Despite the compositional differences in seepage, both sites were similar in discharge magnitude, with average time series 222Rn derived SGD rates equal to 18 and 8 cm dâ1 for the TIR site and non-TIR site, respectively. Results suggest that TIR remote sensing has the ability to identify locations of a mixture between diffuse fresh and circulated seawater SGD. If TIR anomalies can be demonstrated to represent a mixture between fresh and circulated seawater SGD, then the cumulative area of the TIR anomalies may be used to estimate the fresh fraction of SGD relative to the cumulative area of the seepage face, and thus allows for improved SGD derived nutrient flux calculations on a regional scale
Radium mass balance sensitivity analysis for submarine groundwater discharge estimation in semi-enclosed basins: the case study of Long Island Sound
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Cochran, J. K., Bokuniewicz, H., Heilbrun, C., Garcia-Orellana, J., Rodellas, V., & Wilson, R. Radium mass balance sensitivity analysis for submarine groundwater discharge estimation in semi-enclosed basins: the case study of Long Island Sound. Frontiers in Environmental Science, 8, (2020): 108, doi:10.3389/fenvs.2020.00108.Estimation of submarine groundwater discharge (SGD) to semi-enclosed basins by Ra isotope mass balance is herein assessed. We evaluate 224Ra, 226Ra, and 228Ra distributions in surface and bottom waters of Long Island Sound (CT-NY, United States) collected during spring 2009 and summer 2010. Surface water and bottom water Ra activities display an apparent seasonality, with greater activities during the summer. Long-lived Ra isotope mass balances are highly sensitive to boundary fluxes (water flux and Ra activity). Variation (50%) in the 224Ra, 226Ra, and 228Ra offshore seawater activity results in a 63â74% change in the basin-wide 226Ra SGD flux and a 58â60% change in the 228Ra SGD flux, but only a 4â9% change in the 224Ra SGD flux. This highlights the need to accurately constrain long-lived Ra activities in the inflowing and outflowing water, as well as water fluxes across boundaries. Short-lived Ra isotope mass balances are sensitive to internal Ra fluxes, including desorption from resuspended particles and inputs from sediment diffusion and bioturbation. A 50% increase in the sediment diffusive flux of 224Ra, 226Ra, and 228Ra results in a âŒ30% decrease in the 224Ra SGD flux, but only a âŒ6â10% decrease in the 226Ra and 228Ra SGD flux. When boundary mixing is uncertain, 224Ra is the preferred tracer of SGD if sediment contributions are adequately constrained. When boundary mixing is well-constrained, 226Ra and 228Ra are the preferred tracers of SGD, as sediment contributions become less important. A three-dimensional numerical model is used to constrain boundary mixing in Long Island Sound (LIS), with mean SGD fluxes of 1.2 ± 0.9 Ă 1013 L yâ1 during spring 2009 and 3.3 ± 0.7 Ă 1013 L yâ1 during summer 2010. The SGD flux to LIS during summer 2010 was one order of magnitude greater than the freshwater inflow from the Connecticut River. The maximum marine SGD-driven N flux is 14 ± 11 Ă 108 mol N yâ1 and rivals the N load of the Connecticut River.This project has been funded by New York Sea Grant projects (R/CCP-16 and R/CMC-12). This research is contributing to the ICTA-UAB Unit of Excellence âMarĂa de Maeztuâ (MDM-2015-0552) and MERS (2017 SGR â 1588, Generalitat de Catalunya). VR acknowledges financial support from the Beatriu de PinĂłs postdoctoral program of the Catalan Government (2017-BP-00334)
Present and Future Thermal Regimes of Intertidal Groundwater Springs in a Threatened Coastal Ecosystem
In inland settings, groundwater discharge thermally modulates receiving surface water bodies and provides localized thermal refuges; however, the thermal influence of intertidal springs on coastal waters and their thermal sensitivity to climate change are not well studied. We addressed this knowledge gap with a field- and model-based study of a threatened coastal lagoon ecosystem in southeastern Canada. We paired analyses of drone-based thermal imagery with in situ thermal and hydrologic monitoring to estimate discharge to the lagoon from intertidal springs and groundwater-dominated streams in summer 2020. Results, which were generally supported by independent radon-based groundwater discharge estimates, revealed that combined summertime spring inflows (0.047 m3 s-1) were comparable to combined stream inflows (0.050m3 s-1). Net advection values for the streams and springs were also comparable to each other but were 2 orders of magnitude less than the downwelling shortwave radiation across the lagoon. Although lagoon-scale thermal effects of groundwater inflows were small compared to atmospheric forcing, spring discharge dominated heat transfer at a local scale, creating pronounced cold-water plumes along the shoreline. A numerical model was used to interpret measured groundwater temperature data and investigate seasonal and multi-decadal groundwater temperature patterns. Modelled seasonal temperatures were used to relate measured spring temperatures to their respective aquifer source depths, while multi-decadal simulations forced by historic and projected climate data were used to assess long-term groundwater warming. Based on the 2020-2100 climate scenarios (for which 5-year-averaged air temperature increased up to 4.32°), modelled 5-year-averaged subsurface temperatures increased 0.08-2.23° in shallow groundwater (4.2 m depth) and 0.32-1.42 degrees in the deeper portion of the aquifer (13.9 m), indicating the depth dependency of warming. This study presents the first analysis of the thermal sensitivity of groundwater-dependent coastal ecosystems to climate change and indicates that coastal ecosystem management should consider potential impacts of groundwater warming
The renaissance of Odum\u27s outwelling hypothesis in \u27blue carbon\u27 science
The term âBlue Carbonâ was coined about a decade ago to highlight the important carbon sequestration capacity of coastal vegetated ecosystems. The term has paved the way for the development of programs and policies that preserve and restore these threatened coastal ecosystems for climate change mitigation. Blue carbon research has focused on quantifying carbon stocks and burial rates in sediments or accumulating as biomass. This focus on habitat-bound carbon led us to losing sight of the mobile blue carbon fraction. Oceans, the largest active reservoir of carbon, have become somewhat of a blind spot. Multiple recent investigations have revealed high outwelling (i.e., lateral fluxes or horizontal exports) of dissolved inorganic (DIC) and organic (DOC) carbon, as well as particulate organic carbon (POC) from blue carbon habitats. In this paper, we conceptualize outwelling in mangrove, saltmarsh, seagrass and macroalgae ecosystems, diagnose key challenges preventing robust quantification, and pave the way for future work integrating mobile carbon in the blue carbon framework. Outwelling in mangroves and saltmarshes is usually dominated by DIC (mostly as bicarbonate), while POC seems to be the major carbon species exported from seagrass meadows and macroalgae forests. Carbon outwelling science is still in its infancy, and estimates remain limited spatially and temporally. Nevertheless, the existing datasets imply that carbon outwelling followed by ocean storage is relevant and may exceed local sediment burial as a long-term ( \u3e centuries) blue carbon sequestration mechanism. If this proves correct as more data emerge, ignoring carbon outwelling may underestimate the perceived sequestration capacity of blue carbon ecosystems
The renaissance of Odum's outwelling hypothesis in 'Blue Carbon' science
The term âBlue Carbonâ was coined about a decade ago to highlight the important carbon sequestration capacity of coastal vegetated ecosystems. The term has paved the way for the development of programs and policies that preserve and restore these threatened coastal ecosystems for climate change mitigation. Blue carbon research has focused on quantifying carbon stocks and burial rates in sediments or accumulating as biomass. This focus on habitat-bound carbon led us to losing sight of the mobile blue carbon fraction. Oceans, the largest active reservoir of carbon, have become somewhat of a blind spot. Multiple recent investigations have revealed high outwelling (i.e., lateral fluxes or horizontal exports) of dissolved inorganic (DIC) and organic (DOC) carbon, as well as particulate organic carbon (POC) from blue carbon habitats. In this paper, we conceptualize outwelling in mangrove, saltmarsh, seagrass and macroalgae ecosystems, diagnose key challenges preventing robust quantification, and pave the way for future work integrating mobile carbon in the blue carbon framework. Outwelling in mangroves and saltmarshes is usually dominated by DIC (mostly as bicarbonate), while POC seems to be the major carbon species exported from seagrass meadows and macroalgae forests. Carbon outwelling science is still in its infancy, and estimates remain limited spatially and temporally. Nevertheless, the existing datasets imply that carbon outwelling followed by ocean storage is relevant and may exceed local sediment burial as a long-term (>centuries) blue carbon sequestration mechanism. If this proves correct as more data emerge, ignoring carbon outwelling may underestimate the perceived sequestration capacity of blue carbon ecosystems.publishedVersio
Temporal variability of lagoonâsea water exchange and seawater circulation through a Mediterranean barrier beach
The subterranean flow of water through sand barriers between coastal lagoons and the sea, driven by a positive
hydraulic gradient, is a net new pathway for solute transfer to the sea. On the sea side of sand barriers, seawater
circulation in the swash-zone generates a flux of recycled and new solutes. The significance and temporal
variability of these vectors to the French Mediterranean Sea is unknown, despite lagoons constituting ~ 50% of
the coastline. A one-dimensional 224Raex/223Ra reactive-transport model was used to quantify water flow
between a coastal lagoon (La Palme) and the sea over a 6-month period. Horizontal flow between the lagoon
and sea decreased from ~ 85 cm dâ1 during May 2017 (0.3 m3 dâ1 mâ1 of shoreline) to ~ 20 cm dâ1 in July and
was negligible in the summer months thereafter due to a decreasing hydraulic gradient. Seawater circulation
in the swash-zone varied from 10 to 52 cm dâ1 (0.4â2.1 m3 dâ1 mâ1), driven by short-term changes
in the prevailing wind and wave regimes. Both flow paths supply minor dissolved silica fluxes on the order of
~ 3â10 mmol Si dâ1 mâ1. Lagoonâsea water exchange supplies a net dissolved inorganic carbon (DIC) flux
(320â1100 mmol C dâ1 mâ1) two orders of magnitude greater than seawater circulation and may impact coastal
ocean acidification. The subterranean flow of water through sand barriers represents a significant source of new
DIC, and potentially other solutes, to the Mediterranean Sea during high lagoon water-level periods and should
be considered in seasonal element budgets
- âŠ