73 research outputs found

    Prognostic factors in patients with hematological malignancies and concomitant chronic hepatitis C

    Get PDF
    The study evaluated the impact of HCV infection on the prognosis in patients with hematological malignancies. A total of 96 patients with anti-HCV antibodies were enrolled, with the age of 37.8 (3.0–81.0) years old, 39.6% had non-Hodgkin’s lymphoma. Chronic hepatitis C (CHC) was diagnosed in 46.9% patients prior to malignancy development, in 38.5% patients simultaneously with malignancy, and in 14.6% patients during malignancy treatment. Clinical and biochemical signs of HCH were mild in most of the patients, minimal liver fibrosis (F0–1 by METAVIR system) was discovered in 47.3% patients, severe fibrosis or cirrhosis (F3–4) was diagnosed in 40% of participants. Only 20 (20.8%) of patients received antiviral therapy against HCV prior to enrollment. Regression analysis demonstrated that age 55 years old, late onset of antiviral therapy, and poor nutritional status were significant predictors of death from hematological malignancy. Survey conducted among physicians of hematological oncology hospitals in Saint-Petersburg revealed gaps in knowledge on presentation and risks of HCV infection, as well as on opportunities of modern antiviral therapy

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light

    Get PDF
    Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non- uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the Îœe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(EÎœ)\sigma(E_\nu) for charged-current Îœe\nu_e absorption on argon. In the context of a simulated extraction of supernova Îœe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(EÎœ)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(EÎœ)\sigma(E_\nu) must be substantially reduced before the Îœe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(EÎœ)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(EÎœ)\sigma(E_\nu). A direct measurement of low-energy Îœe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Semaglutide and cardiovascular outcomes in patients with obesity and prevalent heart failure: a prespecified analysis of the SELECT trial

    Get PDF
    Background: Semaglutide, a GLP-1 receptor agonist, reduces the risk of major adverse cardiovascular events (MACE) in people with overweight or obesity, but the effects of this drug on outcomes in patients with atherosclerotic cardiovascular disease and heart failure are unknown. We report a prespecified analysis of the effect of once-weekly subcutaneous semaglutide 2·4 mg on ischaemic and heart failure cardiovascular outcomes. We aimed to investigate if semaglutide was beneficial in patients with atherosclerotic cardiovascular disease with a history of heart failure compared with placebo; if there was a difference in outcome in patients designated as having heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction; and if the efficacy and safety of semaglutide in patients with heart failure was related to baseline characteristics or subtype of heart failure. Methods: The SELECT trial was a randomised, double-blind, multicentre, placebo-controlled, event-driven phase 3 trial in 41 countries. Adults aged 45 years and older, with a BMI of 27 kg/m2 or greater and established cardiovascular disease were eligible for the study. Patients were randomly assigned (1:1) with a block size of four using an interactive web response system in a double-blind manner to escalating doses of once-weekly subcutaneous semaglutide over 16 weeks to a target dose of 2·4 mg, or placebo. In a prespecified analysis, we examined the effect of semaglutide compared with placebo in patients with and without a history of heart failure at enrolment, subclassified as heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, or unclassified heart failure. Endpoints comprised MACE (a composite of non-fatal myocardial infarction, non-fatal stroke, and cardiovascular death); a composite heart failure outcome (cardiovascular death or hospitalisation or urgent hospital visit for heart failure); cardiovascular death; and all-cause death. The study is registered with ClinicalTrials.gov, NCT03574597. Findings: Between Oct 31, 2018, and March 31, 2021, 17 604 patients with a mean age of 61·6 years (SD 8·9) and a mean BMI of 33·4 kg/m2 (5·0) were randomly assigned to receive semaglutide (8803 [50·0%] patients) or placebo (8801 [50·0%] patients). 4286 (24·3%) of 17 604 patients had a history of investigator-defined heart failure at enrolment: 2273 (53·0%) of 4286 patients had heart failure with preserved ejection fraction, 1347 (31·4%) had heart failure with reduced ejection fraction, and 666 (15·5%) had unclassified heart failure. Baseline characteristics were similar between patients with and without heart failure. Patients with heart failure had a higher incidence of clinical events. Semaglutide improved all outcome measures in patients with heart failure at random assignment compared with those without heart failure (hazard ratio [HR] 0·72, 95% CI 0·60-0·87 for MACE; 0·79, 0·64-0·98 for the heart failure composite endpoint; 0·76, 0·59-0·97 for cardiovascular death; and 0·81, 0·66-1·00 for all-cause death; all pinteraction>0·19). Treatment with semaglutide resulted in improved outcomes in both the heart failure with reduced ejection fraction (HR 0·65, 95% CI 0·49-0·87 for MACE; 0·79, 0·58-1·08 for the composite heart failure endpoint) and heart failure with preserved ejection fraction groups (0·69, 0·51-0·91 for MACE; 0·75, 0·52-1·07 for the composite heart failure endpoint), although patients with heart failure with reduced ejection fraction had higher absolute event rates than those with heart failure with preserved ejection fraction. For MACE and the heart failure composite, there were no significant differences in benefits across baseline age, sex, BMI, New York Heart Association status, and diuretic use. Serious adverse events were less frequent with semaglutide versus placebo, regardless of heart failure subtype. Interpretation: In patients with atherosclerotic cardiovascular diease and overweight or obesity, treatment with semaglutide 2·4 mg reduced MACE and composite heart failure endpoints compared with placebo in those with and without clinical heart failure, regardless of heart failure subtype. Our findings could facilitate prescribing and result in improved clinical outcomes for this patient group. Funding: Novo Nordisk

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from Îœe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Performance of a modular ton-scale pixel-readout liquid argon time projection chamber

    Get PDF
    The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore