750 research outputs found

    Dark Energy and Modified Gravity

    Get PDF
    Despite two decades of tremendous experimental and theoretical progress, the riddle of the accelerated expansion of the Universe remains to be solved. On the experimental side, our understanding of the possibilities and limitations of the major dark energy probes has evolved; here we summarize the major probes and their crucial challenges. On the theoretical side, the taxonomy of explanations for the accelerated expansion rate is better understood, providing clear guidance to the relevant observables. We argue that: i) improving statistical precision and systematic control by taking more data, supporting research efforts to address crucial challenges for each probe, using complementary methods, and relying on cross-correlations is well motivated; ii) blinding of analyses is difficult but ever more important; iii) studies of dark energy and modified gravity are related; and iv) it is crucial that R&D for a vibrant dark energy program in the 2030s be started now by supporting studies and technical R&D that will allow embryonic proposals to mature. Understanding dark energy, arguably the biggest unsolved mystery in both fundamental particle physics and cosmology, will remain one of the focal points of cosmology in the forthcoming decade.Comment: 5 pages + references; science white paper submitted to the Astro2020 decadal surve

    RUNX1: an emerging therapeutic target for cardiovascular disease

    Get PDF
    Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure

    Histamine H4 receptor agonists induce epithelial-mesenchymal transition events and enhance mammosphere formation via Src and TGF-β signaling in breast cancer cells

    Get PDF
    Epithelial-mesenchymal transition (EMT) contributes to cell invasion and metastasis during the progression of epithelial cancers. Though preclinical evidence suggests a role for histamine H4 receptor (H4R) in breast cancer growth, its function in the EMT is less known. In this study we proposed to investigate the effects of H4R ligands on EMT and mammosphere formation as a surrogate assay for cancer stem cells in breast cancer cells with different invasive phenotype. We also investigated the participation of Src and TGF-β signaling in these events. Breast cancer cells were treated with the H4R agonists Clobenpropit, VUF8430 and JNJ28610244 and the H4R antagonist JNJ7777120. Immunodetection studies showed cytoplasmic E-cadherin, cytoplasmic and nuclear beta-catenin, nuclear Slug and an increase in vimentin and α-smooth muscle actin expression. There was also an enhancement in cell migration and invasion assessed by transwell units. All these effects were prevented by JNJ7777120. Moreover, H4R agonists induced an increase in phospho-Src levels detected by Western blot. Results revealed the involvement of phospho-Src in EMT events. Upon treatment with H4R agonists there was an increase in phospho-ERK1/2 and TGF-β1 levels by Western blot, in Smad2/3 positive nuclei by indirect immunofluorescence, and in tumor spheres formation by the mammosphere assay. Notably, the selective TGF-β1 kinase/activin receptor-like kinase inhibitor A83-01 blocked these effects. Moreover, cells derived from mammospheres exhibited higher Slug expression and enhanced migratory behavior. Collectively, findings support the interaction between H4R and TGF-β receptor signaling in the enhancement of EMT features and mammosphere formation and point out intracellular TGF-β1 as a potential mediator of these events.Fil: Galarza, Tamara Ester. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Táquez Delgado, Mónica Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mohamad, Nora A.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Martin, Gabriela Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Cricco, Graciela P.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    The TSC Complex-mTORC1 Axis:From Lysosomes to Stress Granules and Back

    Get PDF
    The tuberous sclerosis protein complex (TSC complex) is a key integrator of metabolic signals and cellular stress. In response to nutrient shortage and stresses, the TSC complex inhibits the mechanistic target of rapamycin complex 1 (mTORC1) at the lysosomes. mTORC1 is also inhibited by stress granules (SGs), RNA-protein assemblies that dissociate mTORC1. The mechanisms of lysosome and SG recruitment of mTORC1 are well studied. In contrast, molecular details on lysosomal recruitment of the TSC complex have emerged only recently. The TSC complex subunit 1 (TSC1) binds lysosomes via phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2]. The SG assembly factors 1 and 2 (G3BP1/2) have an unexpected lysosomal function in recruiting TSC2 when SGs are absent. In addition, high density lipoprotein binding protein (HDLBP, also named Vigilin) recruits TSC2 to SGs under stress. In this mini-review, we integrate the molecular mechanisms of lysosome and SG recruitment of the TSC complex. We discuss their interplay in the context of cell proliferation and migration in cancer and in the clinical manifestations of tuberous sclerosis complex disease (TSC) and lymphangioleiomyomatosis (LAM)

    Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015

    Get PDF
    The third International Exercise-Associated Hyponatremia (EAH) Consensus Development Conference convened in Carlsbad, California in February 2015 with a panel of 17 international experts. The delegates represented 4 countries and 9 medical and scientific sub-specialties pertaining to athletic training, exercise physiology, sports medicine, water/sodium metabolism, and body fluid homeostasis. The primary goal of the panel was to review the existing data on EAH and update the 2008 Consensus Statement.1 This document serves to replace the second International EAH Consensus Development Conference Statement and launch an educational campaign designed to address the morbidity and mortality associated with a preventable and treatable fluid imbalance. The following statement is a summary of the data synthesized by the 2015 EAH Consensus Panel and represents an evolution of the most current knowledge on EAH. This document will summarize the most current information on the prevalence, etiology, diagnosis, treatment and prevention of EAH for medical personnel, athletes, athletic trainers, and the greater public. The EAH Consensus Panel strove to clearly articulate what we agreed upon, did not agree upon, and did not know, including minority viewpoints that were supported by clinical experience and experimental data. Further updates will be necessary to both: (1) remain current with our understanding and (2) critically assess the effectiveness of our present recommendations. Suggestions for future research and educational strategies to reduce the incidence and prevalence of EAH are provided at the end of the document as well as areas of controversy that remain in this topic. [excerpt

    A systematic review on the diagnosis of pediatric bacterial pneumonia: When gold is bronze

    Get PDF
    Background: In developing countries, pneumonia is one of the leading causes of death in children under five years of age and hence timely and accurate diagnosis is critical. In North America, pneumonia is also a common source of childhood morbidity and occasionally mortality. Clinicians traditionally have used the chest radiograph as the gold standard in the diagnosis of pneumonia, but they are becoming increasingly aware that it is not ideal. Numerous studies have shown that chest radiography findings lack precision in defining the etiology of childhood pneumonia. There is no single test that reliably distinguishes bacterial from non-bacterial causes. These factors have resulted in clinicians historically using a combination of physical signs and chest radiographs as a \u27gold standard\u27, though this combination of tests has been shown to be imperfect for diagnosis and assigning treatment. The objectives of this systematic review are to: 1) identify and categorize studies that have used single or multiple tests as a gold standard for assessing accuracy of other tests, and 2) given the \u27gold standard\u27 used, determine the accuracy of these other tests for diagnosing childhood bacterial pneumonia. Methods and Findings: Search strategies were developed using a combination of subject headings and keywords adapted for 18 electronic bibliographic databases from inception to May 2008. Published studies were included if they: 1) included children one month to 18 years of age, 2) provided sufficient data regarding diagnostic accuracy to construct a 2×2 table, and 3) assessed the accuracy of one or more index tests as compared with other test(s) used as a \u27gold standard\u27. The literature search revealed 5,989 references of which 256 were screened for inclusion, resulting in 25 studies that satisfied all inclusion criteria. The studies examined a range of bacterium types and assessed the accuracy of several combinations of diagnostic tests. Eleven different gold standards were studied in the 25 included studies. Criterion validity was calculated for fourteen different index tests using eleven different gold standards. The most common gold standard utilized was blood culture tests used in six studies. Fourteen different tests were measured as index tests. PCT was the most common measured in five studies each with a different gold standard. Conclusions: We have found that studies assessing the diagnostic accuracy of clinical, radiological, and laboratory tests for bacterial childhood pneumonia have used a heterogeneous group of gold standards, and found, at least in part because of this, that index tests have widely different accuracies. These findings highlight the need for identifying a widely accepted gold standard for diagnosis of bacterial pneumonia in children. © 2010 Lynch et al

    Poly-Gamma-Glutamic Acid (γ-PGA)-based encapsulation of Adenovirus to evade neutralizing antibodies.

    Get PDF
    In recent years, there has been an increasing interest in oncolytic adenoviral vectors as an alternative anticancer therapy. The induction of an immune response can be considered as a major limitation of this kind of application. Significant research efforts have been focused on the development of biodegradable polymer poly-gamma-glutamic acid (γ-PGA)-based nanoparticles used as a vector for effective and safe anticancer therapy, owing to their controlled and sustained-release properties, low toxicity, as well as biocompatibility with tissue and cells. This study aimed to introduce a specific destructive and antibody blind polymer-coated viral vector into cancer cells using γ-PGA and chitosan (CH). Adenovirus was successfully encapsulated into the biopolymer particles with an encapsulation efficiency of 92% and particle size of 485 nm using the ionic gelation method. Therapeutic agents or nanoparticles (NPs) that carry therapeutics can be directed specifically to cancerous cells by decorating their surfaces using targeting ligands. Moreover, in vitro neutralizing antibody response against viral capsid proteins can be somewhat reduced by encapsulating adenovirus into γ-PGA-CH NPs, as only 3.1% of the encapsulated adenovirus was detected by anti-adenovirus antibodies in the presented work compared to naked adenoviruses. The results obtained and the unique characteristics of the polymer established in this research could provide a reference for the coating and controlled release of viral vectors used in anticancer therapy.This work was funded by the Ministry of Higher Education and Scientific Research (Iraq). This work was also partially funded by the Research Investment Fund, University of Wolverhampton (Wolverhampton, United Kingdom) and the Italian Ministry of University and Research (MIUR)

    Preclinical models of myocardial infarction: from mechanism to translation

    Get PDF
    Approximately 7 million people are affected by acute myocardial infarction (MI) each year, and despite significant therapeutic and diagnostic advancements, MI remains a leading cause of mortality worldwide. Pre-clinical animal models have significantly advanced our understanding of MI and enable the development of therapeutic strategies to combat this debilitating disease. Notably, some drugs currently used to treat MI and heart failure (HF) in patients had initially been studied in pre-clinical animal models. Despite this, pre-clinical models are limited in their ability to fully recapitulate the complexity of MI in humans. The pre-clinical model must be carefully selected to maximise the translational potential of experimental findings. This review describes current experimental models of MI and considers how they have been used to understand drug mechanisms of action (MOA) and support translational medicine development

    Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients.

    Get PDF
    In December 2017, the National Academy of Neuropsychology convened an interorganizational Summit on Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients in Denver, Colorado. The Summit brought together representatives of a broad range of stakeholders invested in the care of older adults to focus on the topic of cognitive health and aging. Summit participants specifically examined questions of who should be screened for cognitive impairment and how they should be screened in medical settings. This is important in the context of an acute illness given that the presence of cognitive impairment can have significant implications for care and for the management of concomitant diseases as well as pose a major risk factor for dementia. Participants arrived at general principles to guide future screening approaches in medical populations and identified knowledge gaps to direct future research. Key learning points of the summit included: recognizing the importance of educating patients and healthcare providers about the value of assessing current and baseline cognition;emphasizing that any screening tool must be appropriately normalized and validated in the population in which it is used to obtain accurate information, including considerations of language, cultural factors, and education; andrecognizing the great potential, with appropriate caveats, of electronic health records to augment cognitive screening and tracking of changes in cognitive health over time
    corecore