2,629 research outputs found

    SO(3) vortices and disorder in the 2d SU(2) chiral model

    Get PDF
    We study the correlation function of the 2d SU(2) principal chiral model on the lattice. By rewriting the model in terms of Z(2) degrees of freedom coupled to SO(3) vortices we show that the vortices play a crucial role in disordering the correlations at low temperature. Using a series of exact transformations we prove that, if satisfied, certain inequalities between vortex correlations imply exponential fall-off of the correlation function at arbitrarily low temperatures. We also present some Monte Carlo evidence that these correlation inequalities are indeed satisfied. Our method can be easily translated to the language of 4d SU(2) gauge theory to establish the role of corresponding SO(3) monopoles in maintaining confinement at small couplings.Comment: 13 pages LaTe

    Chaotic Explosions

    Full text link
    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.Comment: 7 pages, 5 figure

    Unjamming of Granular Packings due to Local Perturbations: Stability and Decay of Displacements

    Full text link
    We study the mechanical response generated by local deformations in jammed packings of rigid disks. Based on discrete element simulations we determine the critical force of the local perturbation that is needed to break the mechanical equilibrium and examine the generated displacement field. Displacements decay as a power law of the distance from the perturbation point. The decay exponent and the critical force exhibit nontrivial dependence on the friction: Both quantities are nonmonotonic and have a sharp maximum at the friction coefficient 0.1. We find that the mechanical response properties are closely related to the problem of force-indeterminacy where similar nonmonotonic behavior was observed previously. We establish direct connection between the critical force and the ensemble of static force networks.Comment: 4 pages, 4 figure

    To make a nanomechanical Schr\"{o}dinger-cat mew

    Get PDF
    By an explicite calculation of Michelson interferometric output intensities in the optomechanical scheme proposed by Marshall et al. (2003), an oscillatory factor is obtained that may go down to zero just at the time a visibility revival ought to be observed. Including a properly tuned phase shifter offers a simple amendment to the situation. By using a Pockels phase shifter with fast time-dependent modulation in one arm, one may obtain further possibilities to enrich the quantum state preparation and reconstruction abilities of the original scheme, thereby improving the chances to reliably detect genuine quantum behaviour of a nanomechanical oscillator.Comment: For Proc. DICE-2010 (Castiglioncello), to be published in J. Phys. Conf. Ser., 201

    Universality in active chaos

    Full text link
    Many examples of chemical and biological processes take place in large-scale environmental flows. Such flows generate filamental patterns which are often fractal due to the presence of chaos in the underlying advection dynamics. In such processes, hydrodynamical stirring strongly couples into the reactivity of the advected species and might thus make the traditional treatment of the problem through partial differential equations difficult. Here we present a simple approach for the activity in in-homogeneously stirred flows. We show that the fractal patterns serving as skeletons and catalysts lead to a rate equation with a universal form that is independent of the flow, of the particle properties, and of the details of the active process. One aspect of the universality of our appraoch is that it also applies to reactions among particles of finite size (so-called inertial particles).Comment: 10 page

    The state of asbestos in Hungary

    Get PDF

    Force indeterminacy in the jammed state of hard disks

    Full text link
    Granular packings of hard discs are investigated by means of contact dynamics which is an appropriate technique to explore the allowed force-realizations in the space of contact forces. Configurations are generated for given values of the friction coefficient, and then an ensemble of equilibrium forces is found for fixed contacts. We study the force fluctuations within this ensemble. In the limit of zero friction the fluctuations vanish in accordance with the isostaticity of the packing. The magnitude of the fluctuations has a non-monotonous friction dependence. The increase for small friction can be attributed to the opening of the angle of the Coulomb cone, while the decrease as friction increases is due to the reduction of connectivity of the contact-network, leading to local, independent clusters of indeterminacy. We discuss the relevance of indeterminacy to packings of deformable particles and to the mechanical response properties.Comment: 4 pages, 3 figures. Minor changes, journal reference adde

    Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag

    Full text link
    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle and the downstream distance x of the flow. At high inclination angles the flow does not reach an x-invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gas-like phase.Comment: 10 pages, 16 figures, accepted to Phys. Rev.
    • …
    corecore