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To make a nanomechanical Schrödinger-cat mew
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Abstract. By an explicite calculation of Michelson interferometric output intensities in the
optomechanical scheme proposed byMarshall et al. [1], an oscillatory factor is obtained that may
go down to zero just at the time a visibility revival ought to be observed. Including a properly
tuned phase shifter offers a simple amendment to the situation. By using a Pockels phase
shifter with fast time-dependent modulation in one arm, one may obtain further possibilities to
enrich the quantum state preparation and reconstruction abilities of the original scheme, thereby
improving the chances to reliably detect genuine quantum behaviour of a nanomechanical
oscillator.

Detecting genuine quantum effects in nanomechanical systems is a highly desirable scope,
expected to be reached in the near future. The major challenges are: efficient cooling close
to the ground state, sufficiently strong coupling to a well-identified quantum system, reliable
preparation and identification of non-classical states of the nanomechanical component. Most of
the experimental studies are done on mechanical oscillators, considered harmonic for the small
displacements characteristic for the quantum domain. For those systems ground-state cooling
means kBT < ~ω which is relatively easy to fulfil for hard (high-frequency) oscillators [2]. For
them, however, preparing and analyzing quantum states is overly demanding [3]. The efforts to
reconcile these conflicting requirements have seen rapid and most competitive advance with the
participation of a number of experimental groups. A still more ambitious, so far elusive prospect
of related studies would be to detect deviations from standard quantum mechanics, predicted
by several theoretical studies [4].

An original and promising project, using a soft (low-frequency) nanomechanical oscillator,
coupled by a mirror to one of the paths of a Michelson interferometer, and using Fabry-Perot
cavities (on both paths, to preserve interference) to strengthen the optomechanical coupling, has
been started by Marshall et al. [1], and following extensive development of an optical feedback
cooling technique [5], is now approaching the level of seeing quantum effects.

According to the argument of Ref. [1], for a single-photon source of frequency ωc, and a
vibrating mirror of effective mass M and vibration frequency ωm, acting as one of the mirrors
delimiting a Fabry-Perot resonator cavity of length L, the dimensionless coupling constant is
κ = (ωc/ωm)(

√

(~/2Mωm)/L). With the vibrating-mirror cavity on interferometer arm A, and
the cavity with two rigid mirrors on arm B, starting with a mirror in its quantum mechanical
ground state |0〉m, coupling during time t results in an entangled photon-mirror state

|Ψ(t)〉 = e−iωct

√
2

(

eiϕ(t)|A〉|α(t)〉m + |B〉|0〉m
)

(1)

where |A〉 = |1〉A|0〉B and |B〉 = |0〉A|1〉B denote one-photon states with the photon in arm A
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and in arm B resp., whereas, |α(t)〉m and |0〉m are two coherent states of respective complex
amplitudes α(t) and 0 of the vibrating mirror, appearing as a pair of Schrödinger cat states
entangled to the respective orthogonal photon states |A〉 and |B〉. Finally,

ϕ(t) = κ2(ωmt− sinωmt); α(t) = κ(1− e−iωmt). (2)

The density matrix R̂(t) = |Ψ(t)〉〈Ψ(t)| corresponding to the pure state |Ψ〉 can be expanded

on the photon state basis |A〉 =
(

1
0

)

, |B〉 =
(

0
1

)

in the form of a two-by-two matrix

R̂(t) =

(

ρ̂AA(t) ρ̂AB(t)
ρ̂BA(t) ρ̂BB(t)

)

, (3)

where the matrix elements are operators acting on variables of the vibrating mirror. It has
been pointed out [1, 6] that the crucial quantity characterizing the interference pattern to be
observed is the nondiagonal element on that basis, ρ̂AB(t) = 〈A|Ψ(t)〉〈Ψ(t)|B〉, which carries
extra information about the motion of the vibrating mirror, missing from the more usual reduced
density matrix ρ̂m(t) = ρ̂AA(t) + ρ̂BB(t), obtained by tracing out R̂(t) over photon variables.

Interference visibility, as expressed by ρ̂AB(t), carries a signature of the motion of the
vibrating mirror, but the usefulness of that signature is seriously limited by interactions of the
mirror with the environment. Neglecting direct environmental effects on the photon subsystem,
the above expansion remains valid, allowing decoherence and friction of the vibrating mirror to
be included in the dynamics of ρ̂AB(t) and analyzed by standard tools [6, 7].

Returning for a moment to the decoherence-free case covered by Eq. (1), let us quote the
result of Ref. [1]:

Trm ρ̂AB(t) =
eiϕ(t)

2
Trm [|α(t)〉m m〈0|] = 1

2
eiϕ(t)−|α(t)|2/2, (4)

where Trm means trace over mirror variables. From here one concludes that the crucial quantity
to keep under control is |α(t)|, and - using Eq. (2) - the observation should be carried out
at multiples of time t = 2π/ωm, where |α(t)| returns to 0 and the interference signal can be
large enough to be observed, under the extremely stringent condition that decoherence could be
suppressed by sufficient cooling and isolation from mechanical supports.

That treatment catches the essential point of the phenomenon but fails to give a correct
description of the underlying oscillatory behaviour, which is relevant for a reliable identification
of superposition states of the mirror. To show that, we proceed by noticing that Eq. (1) is not
the final state observed by the photon detectors, since the photons pass once more through the
beam splitter, before reaching output ports C (facing A) and D (facing B). On the time scale
of whatever happens to the vibrating mirror, this is a fast and coherence-preserving unitary
operation on the photon subsystem, transforming the intermediate state (1) into the final one

1

2
e−iωct

[

|C〉
(

|0〉m + ieiϕ(t)|α(t)〉m
)

+ i |D〉
(

|0〉m − ieiϕ(t)|α(t)〉m
)]

(5)

with |C〉 = |1〉C |0〉D = (|A〉 + i|B〉)/
√
2 and |D〉 = |0〉C |1〉D = (i|A〉 + |B〉)/

√
2. Carrying out

the above unitary transformation on the full density matrix, now we can trace over mirror (and
eventually, for a full analysis, environmental) variables to obtain directly the density matrix of
the photons to be detected, in the form

Rphot =

(

Trm ρ̂CC Trm ρ̂C
Trm ρ̂DC Trm ρ̂DD,

)

(6)



with the diagonal elements

IC
ID

}

=
Trm ρ̂CC

Trm ρ̂DD

}

=
1

2
∓ Im (Trm ρ̂AB) (7)

describing the output intensities on the two respective ports, and the off-diagonal elements

Trm ρ̂CD = [Trm ρ̂DC ]
∗ =

1

2
Re (Trm ρ̂AB) + i

(

1

2
− Trm ρ̂AA

)

(8)

describing cross-correlations between the two detectors.
Of particular interest are the output intensities, and we see from Eq. (7) that, instead of the

modulus of Trm ρ̂AB(t), they display the imaginary part of the same quantity. Evaluating, like
before, the decoherence-free case, we obtain

IC
ID

}

=
1

2

(

1 ∓ e−|α(t)|2/2 sin [ϕ(t) + χ(t)]
)

(9)

=
1

2

(

1 ∓ e−κ2(1−cos ωmt) sin
[

κ2(ωmt− sinωmt) + χ(t)
]

)

, (10)

where we have used Equation (2), and for the discussion to follow, included an additional phase
shift χ(t) created by a phase shifter device on arm A of the Michelson interferometer, not present
in the original setup [1].

Having to measure the imaginary part of Trm ρ̂AB(t) makes a huge difference. Without the
phase shifter, that factor oscillates as sinκ2(ωmt − sinωmt), which - depending on the actual
value of the optomechanical coupling constant κ - may go down close to zero just about time
(2π/ωm)n, when the nth visibility revival is expected. There is a simple amendment though:
one should include a constant phase shifter and tune it to

χn = 2π

(

2n+ 1

4
− κ2

)

, (11)

to match the nth maximum of the oscillatory factor with the expected revival time. With that,
revivals become observable in the interferometric intensity patterns, as soon as decoherence
effects are suppressed to the desired level [8]; of course, to see at least n = 1 would be the
minimum requirement. Alternatively, if noise level of data allows, scanning with χ to locate the
maximum signal can be a way to measure the coupling constant κ.

The above reasoning connects the Marshall et al. scheme to a simple token introduced by
Yurke and Stoler [9], used in various experiments [10, 11] to overcome some of the difficulties
associated with the entanglement present e.g. in Eq. (1), and create a visible interference
pattern of the two Schrödinger cat components, as apparent in Eq. (5), observable through
straightforward intensity measurement of a chosen component of the associated two-state
quantum system. In the Marshall et al. scheme it is the last passage through the Michelson
beamsplitter that - acting as a π/2 quasi-spin rotation of the two-state photon basis - offers a
kind of gratis implementation of the Yurke and Stoler procedure; this was the original motivation
for the present work.

Alas, just seing the visibility revival would not prove quantumness [7]. Therefore to reach
that final scope it may be necessary to add a time-dependent phase shifter χ(t) to the photon
subsystem. That can strongly enhance the possibilities of preparing and analysing quantum
states of an oscillator, as demonstrated by the successful application of phase controlling
protocols in ion-trap Schrödinger cat experiments [10]. Optical phase shifters based on the
Pockels effect are commercially available, and admit electric modulation at frequencies up to a
few GHz [12], with the potentiality to make the Marshall et al. nanomechanical Schrödinger cat
mew more clearly about his/her quantum behaviour. Some of the possibilities offered by that
token will be analyzed in a forthcoming paper.
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