958 research outputs found

    Microwave spectrum of toluene⋅SO2: Structure, barrier to internal rotation, and dipole moment

    Full text link
    The microwave spectrum of toluene⋅SO2 was observed with a pulsed beam Fourier‐transform microwave spectrometer. The spectrum displays a‐, b‐, and c‐dipole transitions. The transitions occur as doublets arising from the internal rotation of the methyl group. The transitions were assigned using the principal‐axis method (PAM) internal rotation Hamiltonian with centrifugal distortions. Assuming a threefold symmetry for the internal rotation potential, the barrier height was determined as V3=83.236(2) cm−1. The torsional–rotational spectra of toluene‐CD3⋅SO2 and toluene‐d8⋅SO2 were also assigned. Additional small splittings of the c‐dipole transitions for the normal species and toluene‐CD3⋅SO2 suggest a reorientation tunneling motion of SO2 with respect to the aromatic plane. The moment of inertia data show that the two monomer units are separated by Rcm=3.370(1) Å, with the SO2 located above the aromatic ring. The projection of the C2 axis of SO2 on the aromatic plane makes an angle of τ=47.0(1)° with the C3 axis of toluene. The dipole moment of the complex is ÎŒT=1.869(27) D.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69732/2/JCPSA6-98-5-3627-1.pd

    The microwave spectrum, structure, and tunneling motion of the sulfur dioxide dimer

    Full text link
    The microwave spectrum of (SO2)2 has been reinvestigated using a pulsed beam Fourier‐transform microwave spectrometer. Several new a‐type transitions for the normal species and the a‐type spectra of eight isotopically substituted species were measured. The spectra indicate that the SO2 dimer undergoes a high‐barrier tunneling motion. Based on the analysis used for (H2O)2 by Coudert and Hougen [J. Mol. Spectrosc. 130, 86 (1988)], the internal motion is identified as a geared interconversion motion similar to that displayed by (H2O)2. From the analysis of the moments of inertia of the various isotopic species, an ac plane of symmetry is established for the dimer and the tilt angles of the C2 axes of each subunit relative to the line joining their centers of mass were determined. From Stark effect measurements, ÎŒa was redetermined and ÎŒc was shown to be nearly zero. Electrostatic calculations using distributed multipoles were carried out to explore the structure of this dimer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70674/2/JCPSA6-94-11-6956-1.pd

    Don't know, can't know: Embracing deeper uncertainties when analysing risks

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.Numerous types of uncertainty arise when using formal models in the analysis of risks. Uncertainty is best seen as a relation, allowing a clear separation of the object, source and ‘owner’ of the uncertainty, and we argue that all expressions of uncertainty are constructed from judgements based on possibly inadequate assumptions, and are therefore contingent. We consider a five-level structure for assessing and communicating uncertainties, distinguishing three within-model levels—event, parameter and model uncertainty—and two extra-model levels concerning acknowledged and unknown inadequacies in the modelling process, including possible disagreements about the framing of the problem. We consider the forms of expression of uncertainty within the five levels, providing numerous examples of the way in which inadequacies in understanding are handled, and examining criticisms of the attempts taken by the Intergovernmental Panel on Climate Change to separate the likelihood of events from the confidence in the science. Expressing our confidence in the adequacy of the modelling process requires an assessment of the quality of the underlying evidence, and we draw on a scale that is widely used within evidence-based medicine. We conclude that the contingent nature of risk-modelling needs to be explicitly acknowledged in advice given to policy-makers, and that unconditional expressions of uncertainty remain an aspiration

    Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment

    Full text link
    Graphene stacked in a Bernal configuration (60 degrees relative rotations between sheets) differs electronically from isolated graphene due to the broken symmetry introduced by interlayer bonds forming between only one of the two graphene unit cell atoms. A variety of experiments have shown that non-Bernal rotations restore this broken symmetry; consequently, these stacking varieties have been the subject of intensive theoretical interest. Most theories predict substantial changes in the band structure ranging from the development of a Van Hove singularity and an angle dependent electron localization that causes the Fermi velocity to go to zero as the relative rotation angle between sheets goes to zero. In this work we show by direct measurement that non-Bernal rotations preserve the graphene symmetry with only a small perturbation due to weak effective interlayer coupling. We detect neither a Van Hove singularity nor any significant change in the Fermi velocity. These results suggest significant problems in our current theoretical understanding of the origins of the band structure of this material.Comment: 7 pages, 6 figures, submitted to PR

    New electronic orderings observed in cobaltates under the influence of misfit periodicities

    Full text link
    We study with ARPES the electronic structure of CoO2 slabs, stacked with rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi Surfaces (FS) in phases with different doping and/or periodicities reveal the influence of the RS potential on the electronic structure. We show that these RS potentials are well ordered, even in incommensurate phases, where STM images reveal broad stripes with width as large as 80\AA. The anomalous evolution of the FS area at low dopings is consistent with the localization of a fraction of the electrons. We propose that this is a new form of electronic ordering, induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the FS becomes smaller than the Brillouin Zone of the stacked structure

    A Fast Gradient Approximation for Nonlinear Blind Signal Processing

    Get PDF
    When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose

    A wide band gap metal-semiconductor-metal nanostructure made entirely from graphene

    Full text link
    A blueprint for producing scalable digital graphene electronics has remained elusive. Current methods to produce semiconducting-metallic graphene networks all suffer from either stringent lithographic demands that prevent reproducibility, process-induced disorder in the graphene, or scalability issues. Using angle resolved photoemission, we have discovered a unique one dimensional metallic-semiconducting-metallic junction made entirely from graphene, and produced without chemical functionalization or finite size patterning. The junction is produced by taking advantage of the inherent, atomically ordered, substrate-graphene interaction when it is grown on SiC, in this case when graphene is forced to grow over patterned SiC steps. This scalable bottomup approach allows us to produce a semiconducting graphene strip whose width is precisely defined within a few graphene lattice constants, a level of precision entirely outside modern lithographic limits. The architecture demonstrated in this work is so robust that variations in the average electronic band structure of thousands of these patterned ribbons have little variation over length scales tens of microns long. The semiconducting graphene has a topologically defined few nanometer wide region with an energy gap greater than 0.5 eV in an otherwise continuous metallic graphene sheet. This work demonstrates how the graphene-substrate interaction can be used as a powerful tool to scalably modify graphene's electronic structure and opens a new direction in graphene electronics research.Comment: 11 pages, 7 figure
    • 

    corecore