4 research outputs found

    Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana

    Full text link
    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family

    Caracteritzaci贸 bioinform脿tica de la contribuci贸 de l' "splicing" alternatiu a la variabilitat del proteoma

    Get PDF
    [cat] Els darrers anys, l'splicing alternatiu ha pres un gran protagonisme pel seu rol en la generaci贸 de variabilitat proteica i la seva relaci贸 amb diverses malalties. A nivell d'脿cids nucleics, l'splicing alternatiu es pot donar per diverses vies, resultant en canvis a nivell proteic entre les isoformes, que provoquen variacions estructurals i funcionals. La bioinform脿tica ha participat en l'estudi de l'splicing alternatiu a tots aquests nivells. Aix铆, ha estat utilitzada com una eina de suport en projectes de seq眉enciaci贸 gen貌mica i de microarrays. Per altra banda, tamb茅 s'ha utilitzat per estudiar la complexitat del proteoma i l'impacte estructural i funcional de l'splicing alternatiu. La present tesi es basa en l'estudi dels efectes estructurals i funcionals causats en les prote茂nes per l'splicing alternatiu. Aix铆, hem analitzat el rol de l'splicing alternatiu com a font de variabilitat proteica, n'hem estudiat la conservaci贸 interespec铆fica dels efectes, ens hem centrat en una fam铆lia funcional de prote茂nes per analitzar-ne les variants d'splicing i hem cercat un protocol per a la identificaci贸 d'esdeveniments d'splicing alternatiu equivalents. En primer lloc, hem analitzat la relaci贸 entre l'splicing alternatiu i la duplicaci贸 g猫nica -ambd贸s estan implicats en la diversificaci贸 del proteoma. Darrerament, s'ha trobat una anticorrelaci贸 entre la pres猫ncia de variants d'splicing i duplicats i s'han descobert exemples de possible intercanviabilitat funcional entre els dos fen貌mens. Per aix貌, ens hem decidit a comparar les dues fonts de variabilitat proteica, des dels punts de vista gen貌mic i prote貌mic. Paradoxalment, hem vist que la pres猫ncia d'splicing alternatiu i duplicaci贸 g猫nica estan inversament relacionades, per貌 descartant la hip貌tesi d'intercanviabilitat funcional perqu猫 els gens amb splicing alternatiu i amb duplicats tenen distribucions funcionals similars i els efectes proteics que provoquen els dos fen貌mens s贸n molt diferents. Per aix貌, nosaltres proposem fixar-nos en l'escenari evolutiu i l'equilibri de la dosi g猫nica com a par脿metres essencials per explicar l'anticorrelaci贸. Posteriorment, hem analitzat la conservaci贸 evolutiva dels efectes de l'splicing alternatiu sobre la modulaci贸 funcional. Aix铆, hem caracteritzat els efectes del fen貌men sobre les prote茂nes en quatre esp猫cies diferents i hem comparat esdeveniments equivalents o hom貌legs. Els nostres resultats mostren que hi ha una gran conservaci贸 evolutiva pel que fa a la manera que l'splicing alternatiu modula la funci贸 proteica. Per tant, sembla que les difer猫ncies de complexitat entre els organismes no estan causades per un 煤s diferencial dels mecanismes de l'splicing alternatiu a l'hora de modificar la funci贸 de les prote茂nes, sin贸 que haurem de parar esment a altres possibilitats. Per acabar l'estudi dels efectes de l'splicing alternatiu sobre la variabilitat, ens hem centrat en els factors de transcripci贸, en qu猫 l'splicing alternatiu genera isoformes amb diferent funcionalitat. En el nostre treball, ens hem interessat pel mecanisme per generar diverses isoformes reguladores de la transcripci贸 i la seva conservaci贸. Aix铆, veiem que l'splicing alternatiu modifica uns dominis m茅s sovint que uns altres, per貌 ho fa d'una manera poc precisa, afectant fragments de dominis i regions properes. A m茅s, la conservaci贸 estructural i funcional dels efectes de l'splicing alternatiu 茅s molt alta. Finalment, hem decidit proposar un m猫tode per a la cerca d'esdeveniments hom貌legs d'splicing alternatiu amb l'objectiu d'ajudar en els camps de la biomedicina i la farmacogen貌mica. El m猫tode treballa a partir d'un esdeveniment d'splicing alternatiu i, a partir d'aqu铆, intenta trobar altres esdeveniments que siguin hom貌legs o equivalents. Observant les figures de m猫rit dels tests que hem realitzat, creiem que el m猫tode funciona amb una bona fiabilitat, fet que ens porta a pensar que pot ajudar en l'anotaci贸 funcional de les isoformes i en l'elecci贸 de models animals adequats

    The (In)dependence of Alternative Splicing and Gene Duplication.

    No full text
    Alternative splicing (AS) and gene duplication (GD) both are processes that diversify the protein repertoire. Recent examples have shown that sequence changes introduced by AS may be comparable to those introduced by GD. In addition, the two processes are inversely correlated at the genomic scale: large gene families are depleted in splice variants and vice versa. All together, these data strongly suggest that both phenomena result in interchangeability between their effects. Here, we tested the extent to which this applies with respect to various protein characteristics. The amounts of AS and GD per gene are anticorrelated even when accounting for different gene functions or degrees of sequence divergence. In contrast, the two processes appear to be independent in their influence on variation in mRNA expression. Further, we conducted a detailed comparison of the effect of sequence changes in both alternative splice variants and gene duplicates on protein structure, in particular the size, location, and types of sequence substitutions and insertions/deletions. We find that, in general, alternative splicing affects protein sequence and structure in a more drastic way than gene duplication and subsequent divergence. Our results reveal an interesting paradox between the anticorrelation of AS and GD at the genomic level, and their impact at the protein level, which shows little or no equivalence in terms of effects on protein sequence, structure, and function. We discuss possible explanations that relate to the order of appearance of AS and GD in a gene family, and to the selection pressure imposed by the environment

    Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana

    No full text
    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family
    corecore