7 research outputs found

    Evolution of Protein-Mediated Biomineralization in Scleractinian Corals

    Get PDF
    While recent strides have been made in understanding the biological process by which stony corals calcify, much remains to be revealed, including the ubiquity across taxa of specific biomolecules involved. Several proteins associated with this process have been identified through proteomic profiling of the skeletal organic matrix (SOM) extracted from three scleractinian species. However, the evolutionary history of this putative “biomineralization toolkit,” including the appearance of these proteins’ throughout metazoan evolution, remains to be resolved. Here we used a phylogenetic approach to examine the evolution of the known scleractinians’ SOM proteins across the Metazoa. Our analysis reveals an evolutionary process dominated by the co-option of genes that originated before the cnidarian diversification. Each one of the three species appears to express a unique set of the more ancient genes, representing the independent co-option of SOM proteins, as well as a substantial proportion of proteins that evolved independently. In addition, in some instances, the different species expressed multiple orthologous proteins sharing the same evolutionary history. Furthermore, the non-random clustering of multiple SOM proteins within scleractinian-specific branches suggests the conservation of protein function between distinct species for what we posit is part of the scleractinian “core biomineralization toolkit.” This “core set” contains proteins that are likely fundamental to the scleractinian biomineralization mechanism. From this analysis, we infer that the scleractinians’ ability to calcify was achieved primarily through multiple lineage-specific protein expansions, which resulted in a new functional role that was not present in the parent gene

    Different skeletal protein toolkits achieve similar structure and performance in the tropical coral Stylophora pistillata and the temperate Oculina patagonica

    Get PDF
    Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies

    Stemness Activity Underlying Whole Brain Regeneration in a Basal Chordate

    No full text
    Understanding how neurons regenerate following injury remains a central challenge in regenerative medicine. Adult mammals have a very limited ability to regenerate new neurons in the central nervous system (CNS). In contrast, the basal chordate Polycarpa mytiligera can regenerate its entire CNS within seven days of complete removal. Transcriptome sequencing, cellular labeling, and proliferation in vivo essays revealed that CNS regeneration is mediated by a newly formed neural progeny and the activation of neurodevelopmental pathways that are associated with enhanced stem-cell activity. Analyzing the expression of 239 activated pathways enabled a quantitative understanding of gene-set enrichment patterns at key regeneration stages. The molecular and cellular mechanisms controlling the regenerative ability that this study reveals can be used to develop innovative approaches to enhancing neurogenesis in closely-related chordate species, including humans

    Assembly of the Intraskeletal Coral Organic Matrix during Calcium Carbonate Formation

    No full text
    Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention. In this research, we study the deposition of calcium carbonate on a model substrate, silicon, in the presence of SOM extracted from the skeleton of two coral species representative of different living habitats and colonization strategies, which we previously characterized. The study is performed mainly by grazing incidence X-ray diffraction with the support of Raman spectroscopy and electron and optical microscopies. The results show that SOM macromolecules once adsorbed on the substrate self-assembled in a layered structure and induced the oriented growth of calcite, inhibiting the formation of vaterite. Differently, when SOM macromolecules were dispersed in solution, they induced the deposition of amorphous calcium carbonate (ACC), still preserving a layered structure. The entity of these effects was species-dependent, in agreement with previous studies. In conclusion, we observed that in the setup required by the experimental procedure, the SOM from corals appears to present a 2D lamellar structure. This structure is preserved when the SOM interacts with ACC but is lost when the interaction occurs with calcite. This knowledge not only is completely new for coral biomineralization but also has strong relevance in the study of biomineralization on other organisms
    corecore