22 research outputs found

    Spicule Dynamics over Plage Region

    Full text link
    We studied spicular jets over a plage area and derived their dynamic characteristics using Hinode Solar Optical Telescope (SOT) high-resolution images. The target plage region was near the west limb of the solar disk. This location permitted us to study the dynamics of spicular jets without the overlapping effect of spicular structures along the line of sight. In this work, to increase the ease with which we can identify spicules on the disk, we applied the image processing method `MadMax' developed by Koutchmy et al. (1989). It enhances fine, slender structures (like jets), over a diffuse background. We identified 169 spicules over the target plage. This sample permits us to derive statistically reliable results regarding spicular dynamics. The properties of plage spicules can be summarized as follows: (1) In a plage area, we clearly identified spicular jet features. (2) They were shorter in length than the quiet region limb spicules, and followed ballistic motion under constant deceleration. (3) The majority (80%) of the plage spicules showed the cycle of rise and retreat, while 10% of them faded out without a complete retreat phase. (4) The deceleration of the spicule was proportional to the velocity of ejection (i.e. the initial velocity).Comment: 12 pages, 9 figures, accepted for publication in PAS

    Strain dependent differences in glucocorticoid-induced bone loss between C57BL/6J and CD-1 mice

    Get PDF
    We have investigated the effect of long-term glucocorticoid (GC) administration on bone turnover in two frequently used mouse strains; C57BL/6J and CD1, in order to assess the influence of their genetic background on GC-induced osteoporosis (GIO). GIO was induced in 12 weeks old female C57BL/6J and CD1 mice by subcutaneous insertion of long-term release prednisolone or placebo pellets. Biomechanical properties as assessed by three point bent testing revealed that femoral elasticity and strength significantly decreased in CD1 mice receiving GC, whereas C57BL/6J mice showed no differences between placebo and prednisolone treatment. Bone turnover assessed by microcomputer tomography revealed that contrary to C57BL/6J mice, prednisolone treated CD1 mice developed osteoporosis. In vitro experiments have underlined that, at a cellular level, C57BL/6J mice osteoclasts and osteoblasts were less responsive to GC treatment and tolerated higher doses than CD1 cells. Whilst administration of long-term release prednisolone pellets provided a robust GIO animal model in 12 weeks old CD1 mice, age matched C57BL/6J mice were not susceptible to the bone changes associated with GIO. This study indicates that for the induction of experimental GIO, the mouse strain choice together with other factors such as age should be carefully evaluated

    In vitro Models of Bone Remodelling and Associated Disorders

    Get PDF
    Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling

    An antioxidant screen identifies ascorbic acid for prevention of light-induced mitotic prolongation in live cell imaging

    No full text
    Abstract Phototoxicity is an important issue in fluorescence live imaging of light-sensitive cellular processes such as mitosis. Among several approaches to reduce phototoxicity, the addition of antioxidants to the media has been used as a simple method. Here, we analyzed the impact of phototoxicity on the mitotic progression in fluorescence live imaging of human cells and performed a screen to identify the most efficient antioxidative agents that reduce it. Quantitative analysis shows that high amounts of light illumination cause various mitotic defects such as prolonged mitosis and delays of chromosome alignment and centrosome separation. Among several antioxidants, our screen reveals that ascorbic acid significantly alleviates these phototoxic effects in mitosis. Furthermore, we demonstrate that adding ascorbic acid to the media enables fluorescence imaging of mitotic events at very high temporal resolution without obvious photodamage. Thus, this study provides an optimal method to effectively reduce the phototoxic effects in fluorescence live cell imaging

    ssDNA is not superior to dsDNA as long HDR donors for CRISPR-mediated endogenous gene tagging in human diploid RPE1 and HCT116 cells

    No full text
    Abstract Background Recent advances in CRISPR technology have enabled us to perform gene knock-in in various species and cell lines. CRISPR-mediated knock-in requires donor DNA which serves as a template for homology-directed repair (HDR). For knock-in of short sequences or base substitutions, ssDNA donors are frequently used among various other forms of HDR donors, such as linear dsDNA. However, partly due to the complexity of long ssDNA preparation, it remains unclear whether ssDNA is the optimal type of HDR donors for insertion of long transgenes such as fluorescent reporters in human cells. Results In this study, we established a nuclease-based simple method for the preparation of long ssDNA with high yield and purity, and comprehensively compared the performance of ssDNA and dsDNA donors with 90 bases of homology arms for endogenous gene tagging with long transgenes in human diploid RPE1 and HCT116 cells. Quantification using flow cytometry revealed lower efficiency of endogenous fluorescent tagging with ssDNA donors than with dsDNA. By analyzing knock-in outcomes using long-read amplicon sequencing and a classification framework, a variety of mis-integration events were detected regardless of the donor type. Importantly, the ratio of precise insertion was lower with ssDNA donors than with dsDNA. Moreover, in off-target integration analyses using donors without homology arms, ssDNA and dsDNA were comparably prone to non-homologous integration. Conclusions These results indicate that ssDNA is not superior to dsDNA as long HDR donors with relatively short homology arms for gene knock-in in human RPE1 and HCT116 cells

    ARL-17477 is a dual inhibitor of NOS1 and the autophagic-lysosomal system that prevents tumor growth in vitro and in vivo

    No full text
    Abstract ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic
    corecore