12 research outputs found
Multiphysics Finite Element Analysis of In-Pile Sensors for Advanced Nuclear Reactors
Nuclear reactors have large needs for in-pile sensors that are durable in high temperature, radioactive, and corrosive environments. With the use of multiphysics finite element analysis (FEA) researchers can speed up sensor prototyping. FEA also allows for a better fundamental understanding of sensors and enables sensor optimization. This research focuses on three types of in-pile sensors developed at Idaho National Laboratory: acoustic sensors, linear variable differential transformers (LVDT), and capacitance based strain gauges (CSG). Two acoustic sensors, magnetostrictive waveguides and piezoelectric surface acoustic wave (SAW) sensors were first modeled. These models showed the acoustic wave patterns and estimated the speed of sound. The modeling results were compared to results from laser Doppler vibrometer testing. The model was implemented to enhance the performance of the sensor designs. This research then modeled a LVDT sensor used to measure fuel rod deformation and structural health monitoring. A parametric FEA study was completed for the purpose of sensor miniaturization. The FEA model was also used to investigate the potential of adding a fiber optic cable through the LVDT core. This research eventually modeled CSGs used in nondestructive structural health monitoring. Multiphysics models were used to investigate the discrepancies in experiments and previous analytical models
Elemental Characterization between Single Origin Arabica and Peaberry Robusta from Vietnam
Coffea arabica and coffea canephora (robusta) are the two most common species of coffee. With the rising price and rising global demand for coffee there is an increasing incentive for distributors to pass cheap coffee as more expensive coffee creating a need to verify the authenticity of coffee. This research was conducted to perform elemental characterization of Nguyen brand arabica and robusta coffee grown in Vietnam. The coffee beans were ground and digested by nitric acid digestion. The samples were run using inductively coupled plasma atomic emission spectrometry (ICP-AES) and compared with prepared standards containing calcium, iron, rubidium and manganese. Standard calibration for each element was created from which the element concentration in the coffee samples were determined. The elemental ratio between manganese and calcium in arabica, was approximately double the ratio between manganese and calcium in robusta. The elemental ratio between iron and manganese in arabica was approximately half the ratio in robusta. The elemental ratio between rubidium and manganese in arabica was also approximately half the ratio in robusta. The elemental ratios were compared to confirm that the two species of coffee grown in Vietnam were different. The results showed that the robusta absorbs more iron than arabica when standardized with manganese
Aerosol Jet Printed Capacitive Strain Gauge for Soft Structural Materials
Soft structural textiles, or softgoods, are used within the space industry for inflatable habitats, parachutes and decelerator systems. Evaluating the safety and structural integrity of these systems occurs through structural health monitoring systems (SHM), which integrate non-invasive/non-destructive testing methods to detect, diagnose, and locate damage. Strain/load monitoring of these systems is limited while utilizing traditional strain gauges as these gauges are typically stiff, operate at low temperatures, and fail when subjected to high strain that is a result of high loading classifying them as unsuitable for SHM of soft structural textiles. For this work, a capacitance based strain gauge (CSG) was fabricated via aerosol jet printing (AJP) using silver nanoparticle ink on a flexible polymer substrate. Printed strain gauges were then compared to a commercially available high elongation resistance-based strain gauge (HE-RSG) for their ability to monitor strained Kevlar straps having a 26.7 kN (6 klbf) load. Dynamic, static and cyclic loads were used to characterize both types of strain monitoring devices. Printed CSGs demonstrated superior performance for high elongation strain measurements when compared to commonly used HE-RSGs, and were observed to operate with a gauge factor of 5.2 when the electrode arrangement was perpendicular to the direction of strain
Identification of an N-terminal tag (580N) that improves the biosynthesis of fluorescent proteins in Francisella tularensis and other Gram-negative bacteria
Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria