1,158 research outputs found

    BRST approach to Lagrangian construction for bosonic continuous spin field

    Full text link
    We formulate the conditions defining the irreducible continuous spin representation of the four-dimensional Poincar\'e group based on spin-tensor fields with dotted and undotted indices. Such a formulation simplifies analysis of the Bargmann-Wigner equations and reduces the number of equations from four to three. Using this formulation we develop the BRST approach and derive the covariant Lagrangian for the continuous spin fields.Comment: 10 pages, v2 references adde

    Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star

    Get PDF
    Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulae for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasi-periodic oscillations of the X-ray outburst flux from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.Comment: 10 pages, 10 figure

    Periostin and cancer

    Get PDF
    Periostin is a secreted protein that shares a structural homology to the axon guidance protein fasciclin I (FAS1) in insects and was originally named as osteoblast-specific factor-2 (Osf2). Periostin is particularly highly homologus to Ăźig-h3, which promotes cell adhesion and spreading of fibroblasts. It has recently been reported that Periostin was frequently overexpressed in various types of human cancers. Although the detailed function of Periostin is still unclear, Periostin-integrin interaction through FAS1 domain is thought to be involved in tumor development. In addition, Periostin stimulates metastatic growth by promoting cancer cell survival, invasion and angiogenesis. Therefore, Periostin can be a useful marker to predict the behavior of cancer. This review summarizes the recent understanding of Periostin roles in tumor development and speculates on the usefulness of Periostin as a therapeutic and diagnostic target for cancer

    Periostin overexpression and oral cancer

    Get PDF
    Oral squamous-cell carcinoma (OSCC) is one of the most common types of human cancer. Typically OSCC cells show persistent invasion that frequently leads to local recurrence and distant lymphatic metastasis. We previously identified Periostin as the gene demonstrating the highest fold change expression in the invasive clone by comparing the transcriptional profile of parent OSCC cell line and a highly invasive clone. Here, we demonstrated that Periostin overexpression enhanced invasiveness in oral cancer cell lines. To know the role of Periostin in invasion, angiogenesis and metastasis in OSCC cases, we first examined the expression of Periostin mRNA in 31 OSCC cases by RT–PCR and Periostin protein in 74 OSCC cases by immunohistochemistry. Then, we compared the Periostin expression with invasion pattern, metastasis and blood vessel density. Periostin mRNA and protein overexpression were frequently found in OSCC cases and Periostin expression was well correlated with the invasion pattern and metastasis. Moreover, blood vessel density of Periostin-positive cases was higher than those of Periostin-negative cases. Interestingly, recombinant Periostin enhanced capillary formation in vitro in a concentration-dependant manner. In summary, these findings suggest that Periostin may promote invasion and angiogenesis in OSCC, and that Periostin can be a strong marker for prediction of metastasis in oral cancer patients

    Pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3: An 115In-NQR study under pressure

    Full text link
    We report on the pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3 by means of nuclear-quadrupole-resonance (NQR) studies conducted under a high pressure. The temperature and pressure dependences of the NQR spectra have revealed a first-order quantum-phase transition (QPT) from an AFM to PM at a critical pressure Pc=2.46 GPa. Despite the lack of an AFM quantum critical point in the P-T phase diagram, we highlight the fact that the unconventional SC occurs in both phases of the AFM and PM. The nuclear spin-lattice relaxation rate 1/T1 in the AFM phase have provided evidence for the uniformly coexisting AFM+SC phase. In the HF-PM phase where AFM fluctuations are not developed, 1/T1 decreases without the coherence peak just below Tc, followed by a power-law like T dependence that indicates an unconventional SC with a line-node gap. Remarkably, Tc has a peak around Pc in the HF-PM phase as well as in the AFM phase. In other words, an SC dome exists with a maximum value of Tc = 230 mK around Pc, indicating that the origin of the pressure-induced HF SC in CeIn3 is not relevant to AFM spin fluctuations but to the emergence of the first-order QPT in CeIn3. When the AFM critical temperature is suppressed at the termination point of the first-order QPT, Pc = 2.46 GPa, the diverging AFM spin-density fluctuations emerge at the critical point from the AFM to PM. The results with CeIn3 leading to a new type of quantum criticality deserve further theoretical investigations

    The first evidence for multiple pulsation axes: a new roAp star in the Kepler field, KIC 10195926

    Get PDF
    We have discovered a new rapidly oscillating Ap star among the Kepler Mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 min and 18.1 min, indicating that the star is near the terminal age main sequence. The principal pulsation mode is an oblique dipole mode that shows a rotationally split frequency septuplet that provides information on the geometry of the mode. The secondary mode also appears to be a dipole mode with a rotationally split triplet, but we are able to show within the improved oblique pulsator model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 microHz, which we model as the large separation. The star is an alpha^2 CVn spotted magnetic variable that shows a complex rotational light variation with a period of Prot = 5.68459 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period; i.e. a subharmonic frequency of νrot/2\nu_{\rm rot}/2. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high resolution spectra we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a magnetic pulsation model with fundamental parameters close to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance patches.Comment: 17 pages; 16 figures; MNRA
    • …
    corecore