
Summary. Periostin is a secreted protein that shares a
structural homology to the axon guidance protein
fasciclin I (FAS1) in insects and was originally named as
osteoblast-specific factor-2 (Osf2). Periostin is
particularly highly homologus to ßig-h3, which
promotes cell adhesion and spreading of fibroblasts. It
has recently been reported that Periostin was frequently
overexpressed in various types of human cancers.
Although the detailed function of Periostin is still
unclear, Periostin-integrin interaction through FAS1
domain is thought to be involved in tumor development.
In addition, Periostin stimulates metastatic growth by
promoting cancer cell survival, invasion and
angiogenesis. Therefore, Periostin can be a useful
marker to predict the behavior of cancer. This review
summarizes the recent understanding of Periostin roles
in tumor development and speculates on the usefulness
of Periostin as a therapeutic and diagnostic target for
cancer.
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Periostin 

Periostin, originally named as osteoblast-specific
factor-2 (Osf2) (genebank D13664), first identified in
bone, was implicated in regulating adhesion and
differentiation of osteoblasts (Horiuchi et al., 1999;
Litvin et al., 2004). Periostin is assigned to one family
based on its homology to fasciclin I (FAS1) identified in

insects. Proteins that share homology with FAS1 include
ßig-h3, stablin I and II, MBP-70, Algal-CAM, Periostin,
and Periostin-like-factor (PLF) (Zinn et al., 1988;
Terasaka et al., 1989; Skonier et al., 1992; Takeshita et
al., 1993; Huber and Sumper, 1994; Horiuchi et al.,
1999; Litvin et al., 2004). 

Takeshita et al. cloned mouse POSTN, which they
designated Osf2. By screening human placenta and
osteosarcoma cDNA libraries with mouse POSTN as a
probe, they cloned 2 variants of human POSTN
(Takeshita et al., 1993). One variant encodes a deduced
779-amino acid protein with an apparent molecular mass
of 87.0 kD, and the other encodes a deduced 836-amino
acid protein with an apparent molecular mass of 93.3
kD. Gillan et al. also identified a Periostin EST clone
encoding a deduced 782-amino acid protein (Gillan et
al., 2002). Approximately 90 kDa Periostin has an NH2-
terminal secretory signal peptide, followed by a
cysteine-rich domain, four internal homologous repeats
and a COOH-terminal hydrophilic domain (Takeshita et
al., 1993; Horiuchi et al., 1999) (Fig. 1). The four
internal repeats region of Periostin share a homology
with an axon guidance protein FAS1, containing
sequences that allow binding integrins and
glycosaminoglycans in vivo (Elkins et al., 1990).
Moreover, in N-terminus, Periostin has EMI domain,
which is a small cystein-rich module of ~75 amino acids
(Fig. 1). The EMI domain was first named after its
presence in proteins of the EMILIN family and is
associated with other domains, such as C1q, laminin-
type EGF-like, FN3, WAP, ZP or FAS1 (Doliana et al.,
2000; Callebaut et al., 2003). Mouse and human POSTN
share 89.2% amino acid identity overall and 90.1%
identity in their mature forms. Mouse periostin is located
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on chromosome3 and human periostin is on
chromosome13q.
Periostin expression in cancer

By RNA dot blot analysis, Periostin expression was
observed in a wide range of normal adult tissues,
including aorta, stomach, lower gastrointestinal tract,
placenta, uterus, and breast (Gillan et al., 2002).
Periostin protein expression is observed in normal adult
tissues including adrenal glands, lung, thyroid, stomach,
colon, vagina, ovary, testis and prostate by Western blot
analysis (Tai et al., 2005). Moreover, Periostin is highly
expressed in developing and mature heart valves
(Kruzynska-Frejtag et al., 2001), under pressure or
volume overload in the adult heart (Stanton et al., 2000;
Katsuragi et al., 2004), in developing teeth (Kruzynska-
Frejtag et al., 2004), in skeletal muscle after injury
(Goetsch et al., 2003), and in pulmonary aortic smooth
muscle cells in response to hypoxia (Li et al., 2004).
Secreted Periostin by epithelial ovarian cancer cells, but
not normal ovarian epithelial cells is detected in culture
medium (Gillan et al., 2002). They identified multiple
protein bands of about 90 kD, as well as a band of about
170 kD, which may represent a covalently linked
multimer (Gillan et al., 2002). Recently, it has been
reported that Periostin is frequently overexpressed in
various cancers as described below. Thus, Periostin

expression is ubiquitous, highly expressed in the
embryonic periosteum, cardiac valves, placenta,
periodontal ligament and many adult cancerous tissues. 

Periostin was found to be overexpressed in various
types of human cancer including neuroblastoma (Sasaki
et al., 2002), head and neck cancer (Kudo et al., 2006;
Siriwardena et al., 2006), nasopharygeal carcinoma
(Chang et al., 2005), thyroid carcinoma (Fluge et al.,
2006), non-small cell lung carcinoma (Sasaki et al.,
2001a), breast cancer (Shao et al., 2004; Grigoriadis et
al., 2006), colon cancer (Bao et al., 2004; Tai et al.,
2005), pancreatic ductal adenocarcinoma (Baril et al.,
2006), and ovarian cancer (Gillan et al., 2002).
Interestingly, elevated levels of Periostin have been
detected in sera of patients with thymoma (Sasaki et al.,
2001b), non-small cell lung carcinoma (Sasaki et al.,
2001c), breast cancer (Sasaki et al., 2003) and pancreatic
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Fig. 1. Schematic domain structure of Periostin is shown. The position
of EMI domain and four FAS1/ßIgH3 domain is indicated.

Table 1.

Cancer type/Periostin expression Periostin function Reference

Non-small cell lung cancer
Up-regulation in tissues and serum Correlation with clinical stage and survival Sasaki et al., 2001a and 2001c

Thymoma
Up-regulation in serum Correlation with clinical stage Sasaki et al., 2001b

Neuroblastoma
Up-regulation in tissues Correlation with clinical stage Sasaki et al., 2002

Ovarian cancer
Up-regulation in tissues and serum Cell motility Gillan et al., 2002

Cancer cell line (bladder and osteosarcoma)
Down-regulation Suppress anchorage independent growth Yoshioka et al., 2002

Breast cancer
Up-regulation in serum Corelation with bone metastasis Sasaki et al., 2003
Up-regulation in tissues In vivo tumour growth and angiogenesis Shao et al., 2004
Up-regulation in tissues Correlation with survival Grigoriadis et al., 2006

Colon cancer
Up-regulation in tissues Cellular survival, angiogenesis and metastasis Bao et al., 2004
Up-regulation in tissues Cell proliferation and cellular survival Tai et al., 2005

Nasopharingeal cancer
Up-regulation in tissues Correlation with TGF-ß expression Chang et al., 2005

Bladder cancer
Down-regulation Suppress invasion and metastasis Kim et al., 2005

Head and neck cancer including oral cancer
Up-regulation in tissues Invasion, anchorage-independent growth and metastasis Kudo et al., 2006
Up-regulation in tissues Invasion, angiogenesis and metastasis Siriwardena et al., 2006

Cancer cell line (293T)
Not determined Invasion, EMT and metastasis Yan and Shao, 2006

Pancreas cancer
Up-regulation in tissues Invasion and suppression of hypoxia-induced cell death Baril et al., 2006



ductal adenocarcinoma (Baril et al., 2006). Periostin was
also detected in ascites from ovarian cancer patients
(Gillan et al., 2002). Importantly, Periostin expression is
well correlated with its malignant behavior such as
invasion, metastasis and/or poor survival in
neuroblastoma (Sasaki et al., 2002), head and neck
cancer (Kudo et al., 2006; Siriwardena et al., 2006), non-
small cell lung carcinoma (Sasaki et al., 2001a), breast
cancer (Grigoriadis et al., 2006) and colon cancer (Bao
et al., 2004). Although these reports implicate Periostin
in tumour spread, the functional role of this protein is
poorly described (Table 1). On the other hand, Kim et al.
reported that Priostin overexpression suppressed the
invasiveness and metastasis of tumour cells in bladder
carcinoma (Kim et al., 2005). Moreover, Yoshioka et al.
also found that Periostin overexpression suppressed
anchorage-independent growth in bladder cancer and
osteosarcoma cell lines (Yoshioka et al., 2002).
Although Priostin may play an important role for tumor
progression in various types of cancer, Periostin may
function as a suppresor of tumor progression in some
types of cancer such as bladder cancer and
osteosarcoma. To prove this, investigation of Periostin
expression is required in a larger cohort of various
cancer cases.
Periostin function in cancer

Recently, Periostin was identified as an invasion and
metastasis related gene by differential cDNA display
analysis among normal colon tissue, primary colon
cancer and metastatic tumor in the liver (Bao et al.,
2004), and by comparing the gene expression profiles of
the parent oral cancer cells and highly invasive clones
(Kudo et al., 2006). In the presence of Periostin, tumor
cells enhance invasive activity by forming fewer stress
fibers and increasing the motility of cells (Gillan et al.,
2002). In vivo studies by xenograft assays showed that
Periostin enhances tumour growth, cancer cell survival,
angiogenesis and metastasis compared to Periostin non-
expressing cells (Bao, 2004; Kudo et al., 2006; Yan and
Shao, 2006). Thus Periostin plays important roles for
tumor progression including invasion, angiogenesis,
cellular survival, and metastasis (Fig. 2) (Table 1). The
detailed function of Periostin in tumor progression is
described as follows;
FAS1 domain and integrin

Periostin has FAS1 domains. In mammals, there are
two secretory proteins containing FAS1 domains,
Periostin and ßig-h3. FAS1 of ßig-h3 bears motifs
interacting with integrins, α3ß1 and αvß5 (Kim et al.,
2000, 2002), and mediates endothelial cell adhesion and
migration via integrin αvß3 (Nam et al., 2003). In
addition, ßig-h3 contains an RGD motif near the COOH
terminus, but this integrin recognition site can be deleted
without affecting cell adhesion (Ohno et al., 1999).
Although Periostin does not contain an RGD motif, ßig-

h3 does not contain the sequence homologous to the C-
terminal hydrophilic domain in Periostin, suggesting that
functional differences may exist between the two
proteins during tumor development.

The adhesion of epithelial cells to the ECM involves
both integrin-dependent and independent mechanisms.
Integrins are transmembrane heterodimeric receptors
involved in both cell-cell and cell-ECM interactions
(Hynes, 1992). The functions of integrins are not limited
to cell adhesion, but also involve activation of cytosolic
signaling cascades to mediate cell proliferation, cell
survival, and cell migration (Schwartz et al., 1995;
Lafrenie and Yamada, 1996). Integrin expression is
frequently altered in cancer cells (Varner and Cheresh,
1996; Mizejewski, 1999), which together with the
changes in the ECM composition alters the adhesion and
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Fig. 2. Schematic model of Periostin function in cancer. Invasion,
cellular survival and angiogenesis promoted by Periostin lead to
metastasis of cancer cells through the following steps. 1) Cancer cells
with high expression of Periostin secrete Periostin. 2) Secreted Periostin
binds to integrins in cancer cells and endothelial cells. 3) Periostin
induced cellular survival through the activation of Akt/PKB pathway via
αvß3 integrin in cancer cells. 4) Interaction between Periostin and
integrins promotes invasion through the inhibition of interaction between
integrins and ECM and/or activation of intra-cellular signal. 5) Interaction
between Periostin and integrins promotes angiogenesis in endothelial
cells. 6) Invasion, cellular survival and angiogenesis leads to
metastasis.



motility of cancer cells. Purified recombinant Periostin
supported adhesion of ovarian epithelial cells, and
adhesion was inhibited by antibodies against αvß3 or
αvß5 integrins, but not by antibodies against ß1 integrin,
indicating that Periostin is a ligand of integrins αvß3 and
αvß5 in ovarian cancer cells (Gillan et al., 2002). A
similar result is shown in breast, colon and oral cancer
cells (Bao et al., 2004; Shao et al., 2004; Kudo et al.,
2006). In pancreas cancer cells, α6ß4 integrin complex
acts as the cell receptor of Periostin and this interaction
promotes migration through focal adhesion kinase
(FAK) phosphorylation (Baril et al., 2006). This
selective coordination of inputs from different integrins
largely depends on the cell types that inherently express
distinct membrane receptors. Taken together, these data
strongly suggest that Periostin binds to integrins and that
this interaction may be involved in tumor development. 

It is well known that integrin mediates cell-
extracellular matrix (ECM) interaction and that integrin-
mediated adhesion regulates a variety of intracellular
events (Meredith and Schwartz, 1997). Periostin
transfected cells showed morphological changes as well
as an increase in the expression of mesenchymal markers
such as vimentin and fibronectin, suggesting that
Periostin induces cell invasive activity through epithelial
mesenchymal transformation (EMT) (Yan and Shao,
2006). The adhesion of epithelial cells to the ECM
involves both integrin-dependent and independent
mechanisms. The functions of integrins are not limited to

cell adhesion, but also involve activation of cytosolic
signaling cascades to mediate cell proliferation, cell
survival, and cell migration (Schwartz et al., 1995;
Lafrenie and Yamada, 1996). Integrin expression is
frequently altered in cancer cells (Varner and Cheresh,
1996; Mizejewski, 1999), which together with the
changes in the ECM composition alters the adhesion and
motility of cancer calls. These findings suggest that
Periostin-integrin interaction may inhibit the ECM-
integrin interaction and trigger the intracellular signaling
and activation of certain genes that are involved in tumor
progression.
Invasion

Progression from a solid tumor to an invasive tumor
is a major prerequisite for metastasis and involves
changes in both cell morphology and motility (Friedl and
Wolf, 2003; Yokota, 2000). We previously established an
oral cancer cell line from a metastatic lymph node (Kudo
et al., 2003) and isolated highly invasive clones from
this cell line by using in vitro invasion assay method
(Kudo et al., 2004). Then, we compared the
transcriptional profile of the parent oral cancer cell and a
highly invasive clone by microarray analysis in order to
identify the genes that differ in their expression (Kudo et
al., 2006). We identified Periostin as the gene
demonstrating the highest fold change expression in the
invasive clone. In fact, Periostin overexpressing oral
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Fig. 3. Periostin overexpressing cells
enhanced migration and invasion. Oral
cancer cells were engineered to
overexpress Periostin by transfection with
Periostin plasmid. Migration was assayed
by wound healing assay. For the wound
healing experiment, cells were seeded on 6
well plates and were allowed to grow to
complete confluence. Subsequently, a
plastic pipette tip was used to scratch the
cell monolayer to create a cleared area, and
the wounded cell layer was washed with
fresh medium to remove loose cells.
Immediately following scratch wounding (0
h) and after incubation of cells at 37°C for
24 h, phase-contrast images of the wound
healing process were photographed
digitally. The invasiveness of the cells was
determined by in vitro invasion assay.
Invasion was measured by use of a 24 well
cell culture insert with 8 mm pores (Falcon,
Becton Dickinson, Franklin Lakes, NJ). The
filter was coated with 20 µg of EHS extract
(Iwaki Garasu, Tokyo, Japan), which was
reconstituted basement membrane
substance. The lower compartment
contained 0.5 ml of medium. After
trypsinization, 1.5x105 cells were
resuspended in 100 µl of medium and
placed in the upper compartment of the cell

culture insert for 24 hours. To examine the invasiveness, cells were fixed with formalin and stained with hematoxylin. Periostin overexpression
enhanced migration and invasion of oral cancer cells.



cancer cells enhanced migration and invasion (Kudo et
al., 2006) (Fig. 3). Yan and Shao also found that
Periostin overexpressing 293T cells showed increased
migration and invasive activity compared to control cells
which can be blocked by anti-αvß5 antibody or EGFR
kinase inhibitor, tyrphostin-25 (Yan and Shao, 2006).
Moreover, Periostin overexpressing 293T cells
expressed EMT related genes, vimentin and fibronectin
and increased MMP-9 activation (Yan and Shao, 2006).
Baril et al. found that Periostin promotes invasiveness by
increasing the motility of cells without inducing
expression of proteases in pancreas cancer cells (Baril et
al., 2006). These results suggest that promoting
invasiveness of cancer cells by Periostin may be
mediated by integrin or EGF signaling pathway.

Cellular survival

Metastatic growth is determined by the balance of
cell proliferation and programmed cell death (Hanahan
and Weinberg, 2000). The mechanism that promotes cell
survival or prevents apoptosis of cancer cells would
favor the establishment of metastatic colonies. In vitro
studies demonstrated that highly vascular metastatic
tumors derived from the Periostin producing cells
showed fewer apoptotic cells than control cells (Bao et
al., 2004). Interestingly, Periostin activated the Akt/PKB
pathway via the αvß3 integrin to promote cellular
survival in colon cancer (Bao et al., 2004). Tumor cells
must overcome cellular stresses such as hypoxia and
nutrient deprivation inside the metastatic tumors for
successful growth. Periostin seems to promote resistance
to serum starvation and hypoxia by cellular survival
(Baril et al., 2006). They also demonstrated that Perostin
promoted the survival of pancreas cancer cells by
inducing Akt phosphorylation through binding to ß4
integrin and activation of PI3 kinase pathway (Baril et
al., 2006). Both αvß3 integrins and Akt/PKB pathway
have been implicated as playing important roles in
promoting cell survival and tumorigenesis (Brooks et al.,
1994; Nicholson and Anderson, 2002; Stupack and
Cheresh, 2002). Interestingly, Tai et al. reported that
treatment with anti-Peirostin antibody activates
apoptosis and potentiates the effects of 5-fluorouracil
chemotherapy in colon cancer cells (Tai et al., 2005).
Thus Periostin plays an important role for survival of
cancer cells, and can be a useful option for
chemotherapy. 
Angiogenesis

Angiogenesis, the formation of new blood vessels, is
an important process that occurs during the late stages of
tumorigenesis. Angiogenesis involves endothelial cell
proliferation, migration, and tube formation and is
required for tumor growth. Vascular endothelial growth
factor (VEGF) has been demonstrated to play a critical
role in the development of tumour vasculature (Folkman,
1996). VEGF and its receptor-2, Flk-1/KDR have been
extensively documented to be involved in the induction
of angiogenesis during the development of solid tumors
(Kim et al., 1993; Millauer et al., 1996; Stacker et al.,
2001). VEGF secreted from tumor cells, as well as
stromal cells, exerts its angiogenic effects on endothelial
cells by the activation of Flk-1/KDR. Integrins play an
important role in the activation of endothelial cells as
well as tumor cells (Senger et al., 1996; Soldi et al.,
1999). Engagement of activated VEGF-2 (Flk-1/KDR)
with integrin αvß3 in endothelial cells is required for
cell migration and adhesion in response to VEGF
(Varner and Cheresh, 1996; Max et al., 1997;
Mizejewski, 1999). It has recently been revealed that the
presence of Periostin can stimulate metastatic growth by
inducing angiogenesis (Bao et al., 2004; Shao et al.,
2004). Moreover, Periostin enhances VEGF-C receptor
Flk-1/KDR expression in endothelial cells through
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Fig. 4. Periostin enhanced capillary formation in vitro. Representative
area of capillary formation by recombinant Periostin treatment (0 and
100ng/ml) is shown. An angiogenesis assay kit obtained from Kurabo
(Osaka, Japan) was used according to the manufacturer’s instructions
with minor modification. Human umbilical vein endothelial cells were
treated with different concentrations of recombinant Periostin protein (0
and 100ng/ml) and changed media every 3 days. After 12 days, the
cells were fixed and stained with anti-human CD31 antibody. Periostin
promoted capillary formation.



integrin αvß3-FAK-mediated signaling pathway (Shao et
al., 2004). In fact, recombinant Periostin enhanced
capillary formation (Siriwardena et al., 2006) (Fig. 4).
Thus, Periostin secreted by tumor cells plays a role in a
paracrine manner to augment the survival of endothelial
cells and induce neovascularization, an activity
consistent with the notion that enhanced survival of
endothelial cells within tumors is critical for the
successful development of tumor angiogenesis (Brooks
et al., 1994; Scatena and Giachelli, 2002; Stupack and
Cheresh, 2002). Interestingly, clinical studies of
Periostin expression in human cancers have
demonstrated that increased expression of Periostin is
correlated with the number of blood vessels and
metastasis in oral cancer (Siriwardena et al., 2006).
Metastasis

Metastasis is the leading cause of death in cancer
patients. Tumor metastatic process consists of multiple
and complex steps, all of which must be successfully
completed to give rise to the outgrowth of metastatic
tumors in a new organ environment (Cavallaro and
Christofori, 2000; Chambers et al., 2002; Folkman,
2002). During this process, cancer cells have to
overcome many types of stresses such as hemodynamic
shearing, loss of adhesion, nutrient depletion, hypoxia,
and accumulation of wastes that may all induce cell
death. Recent molecular studies have advanced our
understanding of the disease and provided a rationale to
develop novel strategies for early detection,
classification, prevention and treatment. Attempts to
identify the genes involved in the metastasis are pivotal
for the early prediction of cancer behavior.

Periostin may be a candidate for early prediction of
malignant behavior of cancer. In fact, clinico-
pathological studies revealed that Periostin
overexpression is well correlated with metastasis and
poor prognosis in various cancers (Sasaki et al., 2001a,c,
2002, 2003; Bao et al., 2004; Siriwardena et al., 2006).
Moreover, in vivo studies revealed that Periostin
displayed a striking phenotype of greatly accelerated
tumour metastatic growth by using the animal model
system of metastasis (Bao et al., 2004; Shao et al., 2004;
Kudo et al., 2006; Yan and Shao, 2006). This suggests
that invasion, cellular survival and angiogenesis
mediated by Periostin may be involved in the process of
metastasis.
Problems awaiting solution

Cumulating studies indicate that immuno-
histochemical expression of Periostin and serum levels
of Periostin may have prognostic relevance in cancers.
Overexpression or elevated serum levels of this protein
appear to be associated with poorer prognosis of various
cancers. Why is Periostin overexpressed in cancer? In
colon cancer cells, Periostin expression is induced by
transforming growth factor ß1 (TGF-ß1) (Tai et al.,

2005). Similarly, Periostin is induced by TGF-ß1 in
osteoblasts and fibroblasts (Horiuchi et al., 1999).
Moreover, other factors such as Twist, IL-4, or IL-13
induced Periostin expression or secretion (Oshima et al.,
2002; Takayama et al., 2006). Further studies are
required to identify the inducing factor of Periostin in
each type of cancer. 

On the other hand, Periostin binds to αvß3, αvß5
and α6ß4 integrins, fibronection, tenacin-C, collagen V
and Periostin itself (Gillan et al., 2002; Bao et al., 2004;
Shao et al., 2004; Baril et al., 2006; Takayama et al.,
2006; Yan and Shao, 2006). It is still unclear whether
these interactions are involved in tumor progression,
including cellular survival, angiogenesis, invasion and
metastasis. A mechanistic appreciation for how Periostin
mediates cancer cell growth and survivsal, as well as
crosstalk with stromal-cell accomplices, will be
necessary to identify stages of metastasis that might be
susceptible to therapeutic intervention. Importantly, the
finding that Periostin influences metastatic potential
raises the possibility that it could be used as a molecular
target in anti-metastasis therapy of cancer patients.
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