395 research outputs found
Distant metastasis facilitated by BCG: spread of tumour cells injected in the BCG-primed site.
Tumour metastasis in BCG-pretreated mice was studied using a methylcholanthrene-induced fibrosarcoma in C3H/He mice. When tumour cells were injected into the BCG-primed site, distant metastasis occurred in the lungs and the popliteal lymph node, through this tumour did not metastasize in normal mice. Such metastases were increased in proportion to the number of tumour cells injected into the BCG-primed site, and developed soon after tumour challenge. Concomitant immunity developed well in the mice bearing such metastases, but did not inhibit metastatic growth. Experiments using 125I-labelled SRBC or tumour cells revealed that such cells egressed rapidly from the BCG-primed site. When the tumour was inoculated into the contralateral foot to the BCG-primed site, the incidence and the number of metastases was reduced. Furthermore, BCG infection induced an increase of platelet count. I.v. injection of this tumour induced marked thrombocytopenia in normal mice. Administration of pentoxifylline, a methylxanthine derivative before tumour challenge reduced such metastases. These findings suggest that the changes in peripheral blood, such as increased platelet count and increased release of tumour cells from the injection site, facilitated distant metastasis in BCG-pretreated mice
Measuring the frequency of a Sr optical lattice clock using a 120-km coherent optical transfer
We demonstrate a precision frequency measurement using a phase-stabilized
120-km optical fiber link over a physical distance of 50 km. The transition
frequency of the 87Sr optical lattice clock at the University of Tokyo is
measured to be 429228004229874.1(2.4) Hz referenced to international atomic
time (TAI). The measured frequency agrees with results obtained in Boulder and
Paris at a 6*10^-16 fractional level, which matches the current best
evaluations of Cs primary frequency standards. The results demonstrate the
excellent functions of the intercity optical fibre link, and the great
potential of optical lattice clocks for use in the redefinition of the second.Comment: 14 pages, 3 figure
Fc receptor gamma-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils
ArticleNATURE IMMUNOLOGY. 10(2):214-222 (2009)journal articl
Possibility of an ultra-precise optical clock using the transition in Yb atoms held in an optical lattice
We report calculations designed to assess the ultimate precision of an atomic
clock based on the 578 nm transition in Yb atoms
confined in an optical lattice trap. We find that this transition has a natural
linewidth less than 10 mHz in the odd Yb isotopes, caused by hyperfine
coupling. The shift in this transition due to the trapping light acting through
the lowest order AC polarizability is found to become zero at the magic trap
wavelength of about 752 nm. The effects of Rayleigh scattering, higher-order
polarizabilities, vector polarizability, and hyperfine induced electronic
magnetic moments can all be held below a mHz (about a part in 10^{18}), except
in the case of the hyperpolarizability larger shifts due to nearly resonant
terms cannot be ruled out without an accurate measurement of the magic
wavelength.Comment: 4 pages, 1 figur
Characterization of the absolute frequency stability of an individual reference cavity
We demonstrated for the first time the characterization of absolute frequency
stability of three reference cavities by cross beating three laser beams which
are independently locked to these reference cavities. This method shows the
individual feature of each reference cavity, while conventional beatnote
measurement between two cavities can only provide an upper bound. This method
allows for numerous applications such as optimizing the performance of the
reference cavity for optical clockwork.Comment: 3 figures, 9 page
Nuclear receptors in vascular biology
Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology
NGCPV: A new generation of concentrator photovoltaic cells, modules and systems
This work introduces the lines of research that the NGCPV project is pursuing and some of the first results obtained. Sponsored by the European Commission under the 7th Framework Program and NEDO (Japan) within the first collaborative call launched by both Bodies in the field of energy, NGCPV project aims at approaching the cost of the photovoltaic kWh to competitive prices in the framework of high concentration photovoltaics (CPV) by exploring the development and assessment of concentrator photovoltaic solar cells and modules, novel materials and new solar cell structures as well as methods and procedures to standardize measurement technology for concentrator photovoltaic cells and modules. More specific objectives we are facing are: (1) to manufacture a cell prototype with an efficiency of at least 45% and to undertake an experimental activity, (2) to manufacture a 35% module prototype and elaborate the roadmap towards the achievement of 40%, (3) to develop reliable characterization techniques for III-V materials and quantum structures, (4) to achieve and agreement within 5% in the characterization of CPV cells and modules in a round robin scheme, and (5) to evaluate the potential of new materials, devices technologies and quantum nanostructures to improve the efficiency of solar cells for CPV
Laser locking to the 199Hg clock transition with 5.4x10^(-15)/sqrt(tau) fractional frequency instability
With Hg atoms confined in an optical lattice trap in the Lamb-Dicke regime,
we obtain a spectral line at 265.6 nm in which the full-width at half-maximum
is <15Hz. Here we lock an ultrastable laser to this ultranarrow clock
transition and achieve a fractional frequency stability of
5.4x10^(-15)/sqrt(tau) for tau<=400s. The highly stable laser light used for
the atom probing is derived from a 1062.6 nm fiber laser locked to an
ultrastable optical cavity that exhibits a mean drift rate of -6.0x10^(-17)
s^(-1) (or -16.9 mHz.s^(-1) at 282 THz) over a five month period. A comparison
between two such lasers locked to independent optical cavities shows a flicker
noise limited fractional frequency instability of 4x10^(-16) per cavity
- …