2,196 research outputs found

    The Meter of Metabolism

    Get PDF
    The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes

    Epidermal stem cells ride the circadian wave

    Full text link
    An intriguing study shows that, in epidermal progenitor cells, circadian genes are expressed in successive waves that modulate responses to differentiation signals

    System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock

    Get PDF
    The mammalian circadian timing system consists of a master pacemaker in neurons of the suprachiasmatic nucleus (SCN) and clocks of a similar molecular makeup in most peripheral body cells. Peripheral oscillators are self-sustained and cell autonomous, but they have to be synchronized by the SCN to ensure phase coherence within the organism. In principle, the rhythmic expression of genes in peripheral organs could thus be driven not only by local oscillators, but also by circadian systemic signals. To discriminate between these mechanisms, we engineered a mouse strain with a conditionally active liver clock, in which REV-ERBα represses the transcription of the essential core clock gene Bmal1 in a doxycycline-dependent manner. We examined circadian liver gene expression genome-wide in mice in which hepatocyte oscillators were either running or arrested, and found that the rhythmic transcription of most genes depended on functional hepatocyte clocks. However, we discovered 31 genes, including the core clock gene mPer2, whose expression oscillated robustly irrespective of whether the liver clock was running or not. By contrast, in liver explants cultured in vitro, circadian cycles of mPer2::luciferase bioluminescence could only be observed when hepatocyte oscillators were operational. Hence, the circadian cycles observed in the liver of intact animals without functional hepatocyte oscillators were likely generated by systemic signals. The finding that rhythmic mPer2 expression can be driven by both systemic cues and local oscillators suggests a plausible mechanism for the phase entrainment of subsidiary clocks in peripheral organs

    Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice.

    Get PDF
    We illustrate, through two case studies, that mean-variance QTL mapping -QTL mapping that models effects on the mean and the variance simultaneously-can discover QTL that traditional interval mapping cannot. Mean-variance QTL mapping is based on the double generalized linear model, which extends the standard linear model used in interval mapping by incorporating not only a set of genetic and covariate effects for mean but also set of such effects for the residual variance. Its potential for use in QTL mapping has been described previously, but it remains underutilized, with certain key advantages undemonstrated until now. In the first case study, a reduced complexity intercross of C57BL/6J and C57BL/6N mice examining circadian behavior, our reanalysis detected a mean-controlling QTL for circadian wheel running activity that interval mapping did not; mean-variance QTL mapping was more powerful than interval mapping at the QTL because it accounted for the fact that mice homozygous for the C57BL/6N allele had less residual variance than other mice. In the second case study, an intercross between C57BL/6J and C58/J mice examining anxiety-like behaviors, our reanalysis detected a variance-controlling QTL for rearing behavior; interval mapping did not identify this QTL because it does not target variance QTL. We believe that the results of these reanalyses, which in other respects largely replicated the original findings, support the use of mean-variance QTL mapping as standard practice

    Cry1 expression during postnatal development is critical for the establishment of normal circadian period

    Get PDF
    The mammalian circadian system generates an approximate 24-h rhythm through a complex autoregulatory feedback loop. Four genes, Period1 (Per1), Period2 (Per2), Cryptochrome1 (Cry1), and Cryptochrome2 (Cry2), regulate the negative feedback within this loop. Although these proteins have distinct roles within the core circadian mechanism, their individual functions are poorly understood. Here, we used a tetracycline trans-activator system (tTA) to examine the role of transcriptional oscillations in Cry1 and Cry2 in the persistence of circadian activity rhythms. We demonstrate that rhythmic Cry1 expression is an important regulator of circadian period. We then define a critical period from birth to postnatal day 45 (PN45) where the level of Cry1 expression is critical for setting the endogenous free running period in the adult animal. Moreover, we show that, although rhythmic Cry1 expression is important, in animals with disrupted circadian rhythms overexpression of Cry1 is sufficient to restore normal behavioral periodicity. These findings provide new insights into the roles of the Cryptochrome proteins in circadian rhythmicity and further our understanding of the mammalian circadian clock

    A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs

    Get PDF
    Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN) gene (previously referred to as GDF8). Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the “bully” whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 × 10−6; Kruskal-Wallis Test) and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendall's nonparametric measure, τ = 0.3619; p ≈ 0.00028). These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance

    Sorting live stem cells based on Sox2 mRNA expression.

    Get PDF
    PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner

    The Effective Field Theory of Cosmological Large Scale Structures

    Get PDF
    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c_s^2 10^(-6) and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations \delta(k) for all the observables. As an example, we calculate the correction to the power spectrum at order \delta(k)^4. The predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k \sim 0.24 h/Mpc.Comment: v2: typos corrected, JHEP published versio

    Designing assisted living technologies 'in the wild' : preliminary experiences with cultural probe methodology

    Get PDF
    Background There is growing interest in assisted living technologies to support independence at home. Such technologies should ideally be designed ‘in the wild’ i.e. taking account of how real people live in real homes and communities. The ATHENE (Assistive Technologies for Healthy Living in Elders: Needs Assessment by Ethnography) project seeks to illuminate the living needs of older people and facilitate the co-production with older people of technologies and services. This paper describes the development of a cultural probe tool produced as part of the ATHENE project and how it was used to support home visit interviews with elders with a range of ethnic and social backgrounds, family circumstances, health conditions and assisted living needs. Method Thirty one people aged 60 to 98 were visited in their homes on three occasions. Following an initial interview, participants were given a set of cultural probe materials, including a digital camera and the ‘Home and Life Scrapbook’ to complete in their own time for one week. Activities within the Home and Life Scrapbook included maps (indicating their relationships to people, places and objects), lists (e.g. likes, dislikes, things they were concerned about, things they were comfortable with), wishes (things they wanted to change or improve), body outline (indicating symptoms or impairments), home plan (room layouts of their homes to indicate spaces and objects used) and a diary. After one week, the researcher and participant reviewed any digital photos taken and the content of the Home and Life Scrapbook as part of the home visit interview. Findings The cultural probe facilitated collection of visual, narrative and material data by older people, and appeared to generate high levels of engagement from some participants. However, others used the probe minimally or not at all for various reasons including limited literacy, physical problems (e.g. holding a pen), lack of time or energy, limited emotional or psychological resources, life events, and acute illness. Discussions between researchers and participants about the materials collected (and sometimes about what had prevented them completing the tasks) helped elicit further information relevant to assisted living technology design. The probe materials were particularly helpful when having conversations with non-English speaking participants through an interpreter. Conclusions Cultural probe methods can help build a rich picture of the lives and experiences of older people to facilitate the co-production of assisted living technologies. But their application may be constrained by the participant’s physical, mental and emotional capacity. They are most effective when used as a tool to facilitate communication and development of a deeper understanding of older people’s needs
    corecore