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INVESTIGATION
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in Mice
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*Department of Genetics, †Bioinformatics and Computational Biology Curriculum, ‡The Jackson Laboratory, §Howard
Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
75390, and **Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599

ORCID IDs: 0000-0002-6787-9051 (R.W.C.); 0000-0001-6643-7465 (V.K.); 0000-0001-9984-2600 (L.M.T.); 0000-0003-0384-8878 (J.S.T.);
0000-0002-2419-0430 (W.V.)

ABSTRACT We illustrate, through two case studies, that “mean-variance QTL mapping”—QTL mapping
that models effects on the mean and the variance simultaneously—can discover QTL that traditional interval
mapping cannot. Mean-variance QTL mapping is based on the double generalized linear model, which extends
the standard linear model used in interval mapping by incorporating not only a set of genetic and covariate effects
for mean but also set of such effects for the residual variance. Its potential for use in QTL mapping has been
described previously, but it remains underutilized, with certain key advantages undemonstrated until now. In the
first case study, a reduced complexity intercross of C57BL/6J and C57BL/6N mice examining circadian behavior,
our reanalysis detected a mean-controlling QTL for circadian wheel running activity that interval mapping did not;
mean-variance QTL mapping was more powerful than interval mapping at the QTL because it accounted for the
fact that mice homozygous for the C57BL/6N allele had less residual variance than other mice. In the second case
study, an intercross between C57BL/6J and C58/J mice examining anxiety-like behaviors, our reanalysis detected
a variance-controlling QTL for rearing behavior; interval mapping did not identify this QTL because it does not
target variance QTL. We believe that the results of these reanalyses, which in other respects largely replicated the
original findings, support the use of mean-variance QTL mapping as standard practice.
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Over the last 25 years, quantitative trait locus (QTL) mapping based on
the assumption of homogeneous residual variance and its associated
statistical methods (Lander and Botstein 1989; Martínez and Curnow
1992; Haley and Knott 1992; Churchill and Doerge 1994) have success-
fully identified many QTL that influence the mean value of important

complex traits. It is well-appreciated, however, that this approach fails
to capture all the complexities of the relationship between genotype and
phenotype, and recent interest has expanded the scope of genetic anal-
ysis to also look for QTL that cause the residual variance to be higher
(or lower) in some individuals than others (Deng and Pare 2011;
Rönnegård and Valdar 2012; Shen et al. 2012; Geiler-Samerotte et al.
2013; Nelson et al. 2013; Ayroles et al. 2015; Forsberg et al. 2015). It has
also been noted that modeling QTL effects on the mean, to be effective,
can sometimes require accounting for sources of variance heterogene-
ity—for example, genotype uncertainty (Xu 1998; Feenstra et al. 2006),
X-chromosome inactivation (Ma et al. 2015), and background genetic
or environmental factors more generally (Corty and Valdar 2018a)—
suggesting that joint models of mean and variance could make QTL
mapping more powerful, both for detecting mean-controlling QTL
(mQTL) and variance-controlling QTL (vQTL).

Several such methods incorporating joint models of mean and
variance have been developed in this context. Two closely related efforts
have been the application of the double generalized linear model
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(DGLM; Smyth 1989) to QTL mapping (Rönnegård and Valdar 2011)
and the omnibus test of Cao et al. (2014) for genetic association. [See
also refs in Rönnegård and Valdar (2012), and recent developments of
Soave and Sun (2017); Dumitrascu et al. (2018).] Both of these ap-
proaches can detect mQTL, vQTL, and QTL influencing some combi-
nation of phenotype mean and variance (mvQTL) (Corty and Valdar
2018a). Yet despite the potential of these methods to detect QTL tra-
ditional methods overlook, they remain underutilized.

Barriers towidespread adoption include a lack of proven potential in
real data applications, as well as the absence of software that is in-
teroperable with existing infrastructure. Apart from those barriers, one
reasonable concern is that a novel approachmight fail to identify known
QTL, adding needless complexity to the interpretation of already-
reported QTL. This concern should be largely allayed by the nature
of theDGLMasanextensionof the linearmodel, simplifying to the latter
when variance heterogeneity is absent [with similar arguments holding
for the omnibus test of Cao et al. (2014)]. In fact, rather than add
complexity, the DGLMautomatically classifiesQTL intomQTL, vQTL,
or mvQTL, clarifying the genotype-phenotype relationship.

Herewedemonstrate, with two real data examples available from the
Mouse PhenomeDatabase (Bogue et al. 2017), that QTLmapping using
the DGLM, which we term “mean-variance QTL mapping”, largely
replicates the results of standard QTL mapping and detects additional
QTL that the traditional analysis does not. In two companion articles,
we demonstrate typical usage of R package vqtl, which implements
mean-variance QTL mapping (Corty and Valdar 2018b), and describe
the how mean-variance QTL mapping and its associated permutation
procedures reliably detects QTL in the face of variance heterogeneity
arising from background factors (i.e., genetic or non-genetic factors
outside the targeted QTL) (Corty and Valdar 2018a).

STATISTICAL METHODS

Traditional QTL mapping based on the standard linear
model (SLM)
The traditional approach to mapping a quantitative trait in an exper-
imental cross with no population structure (e.g., an F2 intercross or
backcross) involves fitting, at each locus in turn, a linear model of the
following form. Letting yi denote the phenotype value of individual i,
this phenotype is modeled as

yi � N
�
mi;   s

2�;

wheres2 is the residual variance, and the expected phenotypemean,mi; is
predicted by effects of QTL genotype and, optionally, effects of covariates.
In the reanalyses performed here,mi is modeled to include a covariate of
sex and additive and dominance effects of QTL genotype, that is,

mi ¼ mþ sexibsex þ aiba þ dibd;

wherem is the intercept, bsex is the sex effect, with sexi indicating (0 or
1) the sex of individual i, and ba and bd are the additive and dom-
inance effects of a QTL whose genotype is represented by ai and di
defined as follows: when QTL genotype is known, ai is the count
(0,1,2) of one parental allele, and di indicates heterozygosity (0 or
1); when QTL genotype is inferred based on flanking marker data,
as is done here, ai and di are replaced by their corresponding prob-
abilistic expectations (Haley and Knott 1992; Martínez and Curnow
1992). The evidence for association at a given putative QTL is based
on a comparison of the fit of the model above with that of a null model
that is identical except for the QTL effects being omitted. These

models and their comparison we henceforth refer to as the standard
linear model (SLM) approach.

Mean-variance QTL mapping based on the double
generalized linear model (DGLM)
The statistical model underlying mean-variance QTL mapping, the
double generalized linear model (DGLM; Smyth 1989 and
Rönnegård and Valdar 2011), elaborates the SLM approach by mod-
eling a potentially unique value of s2 for each individual, as

yi � N
�
mi;   s

2
i

�
;

where mi has the same meaning as in the SLM, but now s2
i is linked

to its own linear predictor vi as

si ¼ expðviÞ;
where the exponentiation ensures that si is always positive, though vi
is unconstrained. The linear predictors for mi and vi are modeled as

mean : mi ¼ mþ sexibsex þ aiba þ dibd (1)

logðvarianceÞ : vi ¼ mv þ sexigsex þ aiga þ digd

where m, ai; di, sexi; and the b’s are as before, mv is an intercept
representing the (log of the) “baseline” residual variance, and ga;
gd; and gsex are the effects of the QTL and covariates on vi:

The evidence for a QTL association is now defined through three
distinct model comparisons, corresponding to testing for an mQTL, a
vQTL, or anmvQTL. In each case, the fit of the “full”model in Equation
1 is compared with that of a different fitted null: for the mQTL test, the
null model omits the QTL effects on the mean (i.e., ba ¼ bd ¼ 0); for
the vQTL test, the null model omits the QTL effects on the variance
(i.e., ga ¼ gd ¼ 0); and for the mvQTL test, the null model omits
QTL effects on both mean and variance (i.e., ba ¼ bd ¼ ga ¼ gd ¼ 0).
These tests are detailed in Corty and Valdar (2018a).

Genomewide significance and FWER-adjusted p-values
The model comparisons described above constitute the SLM test and the
threeDGLM-based tests and each produces a likelihood ratio (LR) statistic.
TheseLRstatistics are converted top-values that are adjusted for the family-
wise error rate (FWER) across loci, i.e., p-values on the scale of genome-
wide significance. This adjustment is performed separately for each test by
calculating an empirical distribution for the LR statistic under permutation,
much in the spirit of Churchill and Doerge (1994) but with some modi-
fications, namely that different tests have differently structured permuta-
tions. Briefly, let Gi be the full set of genetic information for individual i,
that is, the genotypes or genotype probabilities across all loci. For the SLM
andmvQTL tests, we define a permutation as randomly shuffling theGi’s
across individuals; for the mQTL test, the permutations apply this shuffle
only to the genotype information in the full model’s mean component; for
the vQTL test, the permutations apply the shuffle only to the genotype
information in the full model’s variance component. For a given test, for
each permutation we calculate LR statistics across the genome and record
the maximum; the maxima of over all permutations is fitted to a general-
ized extreme value distribution, and the upper tail probabilities of this fitted
distribution are used to calculated the FWER-adjusted p-values for the LR
statistics in the unpermuted data [see Dudbridge and Koeleman (2004),
and, e.g., Valdar et al. 2006; more details in Corty and Valdar (2018a)]. An
FWER-adjusted p-value can be interpreted straightforwardly: it is the prob-
ability of observing an association statistic this large or larger in a genome
scan of a phenotype with no true associations.
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Data Availability
All data and scripts used to conduct the analyses presented here andplot
results are archived in a public, static repository at with DOI: 10.5281/
zenodo.1453905. Specifically, the raw data files are:

• 1 Kumar2014:csv The phenotype and genotype data from Kumar
et al. (2013) that was reanalyzed. This dataset is also available from
the Mouse Phenome Database (Bogue et al. 2017) at https://phe-
nome.jax.org/projects/Kumar1.

• 4 Bailey2008:csv The phenotype and genotype data from Bailey
et al. (2008) that was reanalyzed. This dataset is also available from
the Mouse Phenome Database at https://phenome.jax.org/projects/
Bailey1.

• 9 actogram data The raw data on circadian activity from Kumar
et al. (2013) that was used to plot actograms

The analysis and plotting scripts are:

• 2_run_Kumar_scans.R This script runs genome scans with R/qtl
and R/vqtl on the data from Kumar et al. (2013).

• 3_plot_Kumar_scans.R This script plots the results of the reanalysis
of Kumar et al. (2013).

• 5_run_Bailey_scans.R This script runs genome scans with R/qtl and
R/vqtl on the data from Bailey et al. (2008).

• 6_plot_Bailey_scans.R This script plots the results of the reanalysis
of Bailey et al. (2008).

• 7_prune_big_files.R This script strips out redundant information
from the results to make the file size smaller to share more easily
online.

• 8_power_simulations.R This script runs the power simulation com-
paring the DGLM to the SLM at the QTL identified in the Kumar
reanalysis.

The results of running the analysis and plotting scripts are:

• Kumar_scans_1000_perms.RDS This file contains the results of the
reanalysis of Kumar et al. (2013).

• Bailey_scans_1000_perms.RDS This file contains the results of the
reanalysis of Bailey et al. (2008).

• Kumar_plots This directory contains the figures generated by 3_
plot_Kumar_scans.R (Figures 1, 2, and S1).

• Bailey_plots This directory contains the figures generated by 6_
plot_Bailey_scans.R (Figures 4, 5, S5, S6, S7, and S8).

Supplemental material available at Figshare: https://doi.org/
10.25387/g3.7284575.

REANALYSIS OF KUMAR ET AL. REVEALS A NEW MQTL
FOR CIRCADIAN WHEEL RUNNING ACTIVITY

Summary of Original Study
Kumar et al. (2013) intercrossed C57BL/6J and C57BL/6N, two closely-
related strains of C57BL6 that diverged in 1951, approximately 330 gen-
erations ago. Due to recent coancestry of the parental strains, this cross
is termed a “reduced complexity cross”, and their limited genetic dif-
ferences ensure that any identified QTL region can be narrowed to a
small set of variants bioinformatically. The intercross resulted in 244 F2
offspring, 113 female and 131 male, which were tested for acute loco-
motor response to cocaine (20mg/kg) in the open field. One to three
weeks following psychostimulant response testing, the mice were tested
for circadian wheel running activity.

Analysis of wheel running data were carried out using ClockLab
software v6.0.36. For calculation of activity, 20 day-epoch in DD was
used in order to have standard display between actograms. Analysis of
other circadianmeasures such as period (tau) or amplitudewere carried
out using methods previously described (Shimomura et al. 2001). All
animal protocols were approved by the Institutional Animal Care and
Use Committee (IACUC) of the University of Texas Southwestern
Medical Center

Traditional QTL mapping with the SLM, reported in Kumar et al.
(2013), detected a single large-effect QTL for cocaine-response traits on
chromosome 11, but no QTL for circadian activity. A later study by
another group nonetheless observed that the circadian activity of the
two strains showed significant differences (Banks et al. 2015).

Reanalysis with traditional QTL mapping and mean-
variance QTL mapping
For the cocaine response traits, traditional QTL mapping and mean-
variance QTL mapping gave results that were nearly identical to the
originally-published analysis in Kumar et al. (2013) (Figure S1).

For the circadian wheel running activity trait, however, traditional
QTLmapping identified noQTL (Figure 1 in green) butmean-variance
QTL mapping identified one QTL on chromosome 6 (Figure 1 in blue,
black, and red). In this case, all three tests were statistically significant,
but themost significant was the mQTL test (blue), so we discuss it as an
mQTL. The most significant genetic marker was rs30314218 on chro-
mosome 6, at 18.83 cM, 40.0 Mb, with a FWER-controlling p-value of
0.0063. The mQTL explains 8.4% of total phenotype variance by the
traditional definition of percent variance explained (e.g., Broman and
Sen 2009).

Figure 1 Genome scan for Kumar et al. circadian wheel running activity. The horizontal axis shows chromosomal location and the vertical axis
shows FWER-controlling p-values for the association between each genomic locus and circadian wheel running activity. Line colors indicate the
test type, with traditional (green) representing the traditional SLM-based QTL association, and the mQTL (blue), vQTL (red) and mvQTL (black)
tests calculated using (the DGLM-based) mean-variance QTL mapping.
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Understanding the Novel QTL
Though they test for the same pattern, the mQTL test of mean-
variance QTL mapping identified a QTL where the traditional
QTL test did not. This discordance may arise when there is var-
iance heterogeneity in the mapping population. In this case,
mice homozygous for the C57BL/6N allele at the mQTL have

both higher average wheel running activity and lower residual
variance in wheel running activity than mice with other genotypes
(Figure 2a).

The identification of this QTL by mean-variance QTL mapping but
not traditionalQTLmapping can be understood by contrasting how the
DGLM and SLM fit the data at this locus.

Figure 2 (a) Average wheel speed (revolutions/minute) of all mice. It is visually apparent that female mice had higher circadian wheel running activity
than male mice and that mice that homozygous for C57BL/6N had higher circadian wheel running activity and less intra-genotype variation. Large
dots indicate the mice whose activity is shown in actogram form (males in Figure 3; all in Figure S2). (b) Predicted mean and variance of mice
according to sex and allele at the QTL. What was visually apparent in (a) is captured by the DGLM. The estimated parameters relating to mice
that are homozygous for the C57BL/6N allele imply a higher expected value and a lower residual variance than the other two genotype
groups. Black x’s indicate the estimates from the SLM, very similar to the DGLM estimates in the horizontal (mean) axis, but homogeneous in
the vertical (variance) axis.

Figure 3 Double-plotted actograms illustrate the variation in wheel running activity of male mice based on their genotype at rs30314218. On
reading a single actogram: An actogram illustrates the activity of a single mouse over the course of an experiment. Each day of the
experiment is represented by a histogram, with bin width of six minutes. Histograms are stacked vertically. Additionally, each day is shown
twice (repeated horizontally) so that there is no time of day that is illegible due to the plot edges. Yellow box indicates when lights were on.
On reading this six-actogram plot: Recall that the DGLM estimates a unique mean and standard deviation (SD) for each genotype. The mice
whose actograms are shown here had an activity level that is one genotype-specific SD greater than (top) or less than (bottom) the
genotype-specific mean. The difference between the two is much less in the C57BL/6N homozygotes than in the other genotypes,
reflecting the decreased phenotype variance among C57BL/6N homozygotes. The animals shown in this figure are marked with large blue
circles in Figure 2a. A larger figure that also includes female mice as well as the ID’s of all plotted mice are in the supplement (Figure S2 and
Table 2).

3786 | R. W. Corty et al.



For the SLM, a single value of the residual standard deviation s is
estimated for all mice. Approximately 25% of themice are homozygous
for the C57BL/6N allele, so s is estimated mostly based on heterozy-
gous mice and homozygous C57BL/6J mice. The SLM estimates
ŝ ¼ 7:83, a slight underestimate for some genotype-sex combinations,
and a drastic overestimate for the homozygous C57BL/6N of both sexes
(Figure 2b). With s overestimated for the C57BL/6N homozygotes,
the addition of a locus effect to the null model results in only a limited
increase in the likelihood, one that could reasonably be caused by
chance alone. For the DGLM, six different values of s are estimated,
one for each genotype-sex combination (Figure 2b). With a better-
estimated (lower) ŝ for the C57BL/6N homozygotes, the addition of
the locus effect to the null model results in a greater increase in the
likelihood, one that is very unlikely due to chance alone.

A simulation based on the estimated coefficients shows that at a false
positive rate of 5 · 1024, relevant for genome-wide significance testing,
the SLM has 61% power to reject the null at this locus and the DGLM
has 90% power (See file 8_power_simulations.R).

Variant Prioritization
Reduced complexity crosses allow variant prioritization to proceed
quickly because of the number of segregating variants is small. Using
1000 nonparametric bootstrap resamples, the QTL interval was esti-
matedas13.5-23.5cM(90%CI),which translates tophysicalpositionsof
32.5 - 48.5 Mb using Mouse Map Converter’s sex averaged Cox map
(Cox et al. 2009). Since this interval contains no genes or previously
identified QTL shown to regulate circadian rhythms, we prioritized
candidates by identifying variants between C57BL/6J and C57BL/6NJ
based on Sanger mouse genome database (Keane et al. 2011; Simon
et al. 2013), which yielded 463 SNPs, 124 indels, and 3 structural var-
iants (Table 1).

Of these variants, none of the indels or structural variants were
nonsynonymous. Two SNPswere predicted to lead tomissense changes
(T toA at position 6: 39400456 inMkrn1, andA toA/C at 6:48486716 in
Sspo). The variant in Sspo was a very low confidence call and therefore
likely a false positive.

TheMkrn1 (makorin ring finger protein 1) variant is a mutation in
C57BL/6J that changes a highly conserved (Figure S3 and Figure S4)
tyrosine to asparagine with rsID rs30899669. It was determined to be
the best candidate variant in the QTL interval. The Mkrn1 protein is a
ubiquitin E3 ligase with zinc finger domains with poorly defined func-
tion (Kim et al. 2005). It is expressed at low levels widely in the brain
according to Allen Brain Atlas and EBI Expression Atlas (Lein et al.
2007; Kapushesky et al. 2009; McWilliam et al. 2013). Functional anal-
ysis will be necessary to experimentally confirm that this variant in
Mkrn1 is indeed the causativemutation that led, in a dominant fashion,
to the decreased expected value and increased variance of circadian
wheel running activity observed in mice with at least one copy of the
C57BL/6J haplotype in the QTL region in this study.

REANALYSIS OF BAILEY ET AL. IDENTIFIES A NEW VQTL
FOR REARING BEHAVIOR

Summary of Original Study
Bailey et al. (2008) intercrossed C57BL/6J and C58/J mice, two
strains known to be phenotypically similar for anxiety-related be-
haviors, as a control cross for an ethylnitrosourea mutagenesis
mapping study. The intercross resulted in 362 F2 offspring, 196 fe-
males and 166 males. Six open-field behaviors were measured at
approximately 60 days of age in a 43cm by 43cm by 33cm white
arena for ten minutes. All phenotypes were transformed with the
rank-based inverse normal transform to limit the influence of
outliers. The authors reported 7 QTL spread over five of the six
measured traits, but none for rearing behavior.

Reanalysis with SLM and DGLM
SLM-basedQTLanalysis replicated the originally-reportedLODcurves.
Significance thresholds to control FWER at 0.05 were estimated by
10,000 permutations, using the method described in the original pub-
lication, but found to be meaningfully higher than the originally-
reported thresholds. Of the 7 originally-reported QTL, 3 exceeded
the newly-estimated thresholds (Figure S5).

The DGLM-based reanalysis was initially conducted with the
rank-based inverse normal transformed phenotypes, to maximize
the comparability with the original study. This reanalysis largely
replicated the results of the SLM-based analysis and identified a
statistically-significant vQTL for rearing behavior on chromosome
2 (Figure 4 and Figure S5). The top marker under the peak was at
38.6cM and 65.5Mb.

There are well-known and well-founded concerns that inap-
propriate scaling of phenotypes can produce spurious vQTL
(Rönnegård and Valdar 2012; Sun et al. 2013; Shen and Ronnegard
2013). Therefore, the rearing phenotype was analyzed under a
variety of additional transforms: none, log, square root, and 1

4
th

power (the transformation recommended by the Box-Cox proce-
dure). Because the trait is a “count” and a positive mean-variance
correlation was observed, the trait was further analyzed with a
Poisson double generalized linear model with its canonical link
function (log). In all cases, the same genomic region on chromo-
some 2 was identified as a statistically significant vQTL (p, 0:01)
(Figure S6, Figure S7 and Figure S8). Though all transformations
yielded similar results, we highlight the Box-Cox transformed
analysis recommended for transformation selection in Rönnegård
and Valdar (2011).

n Table 2 The characteristics of the mice plotted in Figure 3

genotype at
rs30314218 sex activity in the DD (rev/min)

6J female 12.79
6J female 38.20
6J male 8.07
6J male 27.99
Het female 14.03
Het female 40.13
Het male 1.87
Het male 30.68
6N female 22.22
6N female 33.85
6N male 16.75
6N male 28.71

n Table 1 Genetic Variants in QTL interval for circadian wheel
running activity

location indel SNP SV Total

exon, missense – 2 – 2
intron 58 247 – 305
39 UTR – 3 – 3
upstream 6 29 – 35
downstream 7 20 – 27
intergenic 53 161 – 214
unclassified – 1 3 4
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Understanding the Novel QTL
In this case, the DGLM-based analysis identified a vQTL, a pattern
of variation across genotypes not targeted by traditional, SLM-based,
QTL analysis. The phenotype values, when stratified by genotype at
the top locus, illustrate clear variance heterogeneity (Figure 5a). The
effects and their standard errors estimated by the DGLM fitted at the
top locus corroborate the impression from simply viewing the data,
that the locus is a vQTL but not an mQTL (Figure 5b).

DISCUSSION
We have demonstrated through two case studies that mean-variance
QTLmappingbasedontheDGLMexpands the rangeofQTLthat canbe
detected, including both mQTL at loci that exhibit variance heteroge-
neity and vQTL. In an era where evermore complete and complex data
on biological systems is becoming available, this modest elaboration of
an existing approach represents a step toward the broader goal of
characterizing the wide array of patterns of association between geno-
type, environment, and phenotype.

In the reanalysis of Kumar et al., mean-variance QTL mapping
identified the same QTL as traditional, SLM-based QTL mapping
for cocaine response traits and one novel mQTL for a circadian
behavior trait. Such an mQTL would likely have been detected by
a traditional QTL analysis with a larger mapping population:
Through simulation, we estimated that the additional power to de-
tect the mQTL was equivalent to the power increase that would have
come from increasing the sample size by �100 mice, from 244 to

�350 (See file 8_power_simulations.R). Given the considerable ef-
fort and expense associated with conducting an experimental cross
or expanding the size of the mapping population, there seems to be
little to be gained by omitting a DGLM-based analysis.

In the reanalysis of Bailey et al., mean-variance QTLmapping iden-
tified a novel vQTL for an exploratory behavior. A vQTL such as this
would not be detected by the traditional QTL analysis no matter how
large the mapping population because the pattern is entirely undetect-
able by the SLM.

The identification of a vQTL raises important issues related to
phenotype transformation and the interpretation of findings, but both
aremanageable, aswehave illustratedhere. The criticism that a spurious
vQTL can arise as the result of an inappropriate transformation is based
on the observation that when genotypemeans are unequal, there always
exists a (potentially exotic) transformation that diminishes the extent of
variance heterogeneity (Sun et al. 2013). Thus, any other transforma-
tion (including none at all) can be seen as inflationary toward variance
heterogeneity. In this context, however, an “inappropriate transforma-
tion” leads not to the misclassification of a non-QTL as a QTL, but an
mQTL as a vQTL.

To the extent that the goal of QTLmapping is to understand a trait’s
genetic architecture, this criticism is valid and should be addressed by
considering a wide range of transformations, alternative models, and
parameterizations. To the extent that the goal of QTL mapping is to
identify genomic regions that contain genes and regulatory factors that
influence a trait in any way, we argue that such a misclassification is

Figure 4 Genome scan for Bailey et al. rearing behavior. The x axis shows chromosomal location and the y axis shows FWER-controlling p-values
for the association between each genomic locus and the Box-Cox transformed rearing behavior.

Figure 5 (a) “Total Rearing Events”, transformed by the Box-Cox procedure, stratified by sex and genotype at the top marker. (b) Predicted mean
and variance of mice according to sex and allele at the top marker.

3788 | R. W. Corty et al.



often irrelevant.Whether we pursue bioinformatic follow-up to identify
QTN in a region because it was identified as an mQTL or a vQTL need
not change our downstream efforts.

Insummary,weadvocate for theuseofmean-varianceQTLmapping
not as an additional flourish to consider after conducting an SLM-based
QTLmapping effort, but rather as adrop-in replacement. This approach
should not be too alien — when variance heterogeneity is absent, it
simplifies to the well-known SLM-based approach. Full-featured soft-
ware that implements this approach is described in a companion article
(Corty and Valdar 2018b).

Last, we note an additional benefit conferred by mean-variance QTL
mappingnotdiscussed indepthhere.Varianceheterogeneitycanalsoderive
from factors acting in the “background”, that is, arising from experimental
or biological variables that are outside the main focus of testing but that
nonetheless predict phenotypic variability and thereby inform the relative
precision of one individual’s phenotype over another. In the case studies
presented here, the only background factor considered was sex. But, more
generally, any factor that a researcher considers as a potentially important
covariate that should be modeled can be included not only as a mean
covariate (as with the SLM) but also as a variance covariate. As described
in a companion article, Corty and Valdar (2018a), this practice has the
potential to both deliver increased power to detect QTL (mQTL, vQTL,
and mvQTL) as well as increase the reproducibility of published QTL.
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