7 research outputs found

    Ballistic transport and surface scattering in (In,Ga)As-InP heterostructure narrow channels

    Get PDF
    Narrow conduction channels are fabricated from an In0.75Ga0.25As-InP heterostructure using electron-beam lithography and dry etching. The etched surface is realized to be smooth by employing a reactive ion etching. The etching-induced surface conduction is eliminated by removing the damaged surface layer using a diluted HCl solution. The negligible surface depletion for the In-rich quantum well enables to create conducting channels in arbitrary geometries such as in a circular shape. We evidence the presence of a ballistic contribution in the electron transport by demonstrating a rectification of rf excitations that is achieved by the magnetic-field-tuned transmission asymmetry in the circularly-shaped channels. The absence of the surface depletion is shown to cause, on the other hand, a surface scattering for the electrons confined in the channels. An increase of the resistance, including its anomalous enhancement at low temperatures, is induced by the gas molecules attached to the sidewalls of the channels. We also report a large persistent photoconduction, which occurs as a parallel conduction in the undoped InP barrier layer.Peer Reviewe

    Mirror-symmetric Magneto-optical Kerr Rotation using Visible Light in [(GeTe)2(Sb2Te3)1]n Topological Superlattices

    Get PDF
    Interfacial phase change memory (iPCM), that has a structure of a superlattice made of alternating atomically thin GeTe and Sb2Te3 layers, has recently attracted attention not only due to its superior performance compared to the alloy of the same average composition in terms of energy consumption but also due to its strong response to an external magnetic field (giant magnetoresistance) that has been speculated to arise from switching between topological insulator (RESET) and normal insulator (SET) phases. Here we report magneto-optical Kerr rotation loops in the visible range, that have mirror symmetric resonances with respect to the magnetic field polarity at temperatures above 380 K when the material is in the SET phase that has Kramers-pairs in spin-split bands. We further found that this threshold temperature may be controlled if the sample was cooled in a magnetic field. The observed results open new possibilities for use of iPCM beyond phase-change memory applications

    Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices

    Get PDF
    Multiferroics, materials in which both magnetic and electric fields can induce each other, resulting in a magnetoelectric response, have been attracting increasing attention, although the induced magnetic susceptibility and dielectric constant are usually small and have typically been reported for low temperatures. The magnetoelectric response usually depends on d-electrons of transition metals. Here we report that in [(GeTe)2(Sb2Te3)l]m superlattice films (where l and m are integers) with topological phase transition, strong magnetoelectric response may be induced at temperatures above room temperature when the external fields are applied normal to the film surface. By ab initio computer simulations, it is revealed that the multiferroic properties are induced due to the breaking of spatial inversion symmetry when the p-electrons of Ge atoms change their bonding geometry from octahedral to tetrahedral. Finally, we demonstrate the existence in such structures of spin memory, which paves the way for a future hybrid device combining nonvolatile phase-change memory and magnetic spin memory
    corecore