10 research outputs found

    Polypodium leucotomos targets multiple aspects of oral carcinogenesis and it is a potential antitumor phytotherapy against tongue cancer growth

    Get PDF
    Introduction: Oral cancer refers to malignant tumors, of which 90% are squamous cell carcinomas (OSCCs). These malignancies exhibit rapid progression, poor prognosis, and often mutilating therapeutical approaches. The determination of a prophylactic and/or therapeutic antitumor role of the polyphenolic extract Polypodium leucotomos(PL) would be relevant in developing new tools for prevention and treatment.Methods: We aimed to determine the antitumor effect of PL by treating OSCC cell lines with PL metabolites and evaluating its action during OSCC progression in vivo.Results: PL treatment successfully impaired cell cycling and proliferation, migration, and invasion, enhanced apoptosis, and modulated macrophage polarization associated with the tumoral immune-inflammatory response of tongue cancer cell lines (TSCC). PL treatment significantly decreased the expression of MMP1 (p < 0.01) and MMP2 (p < 0.001), and increased the expression of TIMP1 (p < 0.001) and TIMP2 (p < 0.0001) in these cells. The mesenchymal-epithelial transition phenotype was promoted in cells treated with PL, through upregulation of E-CAD (p < 0.001) and reduction of N-CAD (p < 0.05). PL restrained OSCC progression in vivo by inhibiting tumor volume growth and decreasing the number of severe dysplasia lesions and squamous cell carcinomas. Ki-67 was significantly higher expressed in tongue tissues of animals not treated with PL(p < 0.05), and a notable reduction in Bcl2 (p < 0.05) and Pcna (p < 0.05) cell proliferation-associated genes was found in dysplastic lesions and TSCCs of PL-treated mice. Finally, N-cad(Cdh2), Vim, and Twist were significantly reduced in tongue tissues treated with PL.Conclusion: PL significantly decreased OSCC carcinogenic processes in vitro and inhibited tumor progression in vivo. PL also appears to contribute to the modulation of immune-inflammatory oral tumor-associated responses. Taken together, these results suggest that PL plays an important antitumor role in processes associated with oral carcinogenesis and may be a potential phytotherapeutic target for the prevention and/or adjuvant treatment of TSCC

    Heparanase 1 Upregulation Promotes Tumor Progression and Is a Predictor of Low Survival for Oral Cancer

    Get PDF
    Background: Oral cavity cancer is still an important public health problem throughout the world. Oral squamous cell carcinomas (OSCCs) can be quite aggressive and metastatic, with a low survival rate and poor prognosis. However, this is usually related to the clinical stage and histological grade, and molecular prognostic markers for clinical practice are yet to be defined. Heparanase (HPSE1) is an endoglycosidase associated with extracellular matrix remodeling, and although involved in several malignancies, the clinical implications of HPSE1 expression in OSCCs are still unknown.Methods: We sought to investigate HPSE1 expression in a series of primary OSCCs and further explore whether its overexpression plays a relevant role in OSCC tumorigenesis. mRNA and protein expression analyses were performed in OSCC tissue samples and cell lines. A loss-of-function strategy using shRNA and a gain-of-function strategy using an ORF vector targeting HPSE1 were employed to investigate the endogenous modulation of HPSE1 and its effects on proliferation, apoptosis, adhesion, epithelial-mesenchymal transition (EMT), angiogenesis, migration, and invasion of oral cancer in vitro.Results: We demonstrated that HPSE1 is frequently upregulated in OSCC samples and cell lines and is an unfavorable prognostic indicator of disease-specific survival when combined with advanced pT stages. Moreover, abrogation of HPSE1 in OSCC cells significantly promoted apoptosis and inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition by significantly decreasing the expression of N-cadherin and vimentin. Furthermore, a conditioned medium of HPSE1-downregulated cells resulted in reduced vascular endothelial growth.Conclusion: Our results confirm the overexpression of HPSE1 in OSCCs, suggest that HPSE1 expression correlates with disease progression as it is associated with several important biological processes for oral tumorigenesis, and can be managed as a prognostic marker for patients with OSCC.Peer reviewe

    Toll-like receptor 4 (TLR4) influences the glial reaction in the spinal cord and the neural response to injury following peripheral nerve crush

    No full text
    After peripheral axotomy, there is a selective retraction of synaptic terminals in contact with injured motoneurons. This process, which actively involves glial cells, is influenced by the expression of immune-related molecules. Since toll-like receptors (TLRs) are upregulated by astrocytes and microglia following lesions, they might be involved in synaptic plasticity processes. Therefore, we administered lipopolysaccharide (LPS) to enhance TLR4 expression in mice and studied retrograde changes in the spinal cord ventral horn following sciatic nerve crush. To this end, adult C57BL/6J male mice were subjected to unilateral sciatic nerve crush at the mid-thigh level and, after a survival time of seven and forty days (acute and chronic phases, respectively), the spinal cords were paraformaldehyde-fixed and dissected out for immunolabeling for synaptophysin, glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). The results show that TLR4 upregulation leads to synaptophysin downregulation close to spinal motoneuron cell bodies, indicating increased synaptic elimination. LPS exposure also further increases astrogliosis and microglial reactions in the both ventral and dorsal horns, especially ipsilateral to nerve axotomy, compared to those in untreated mice. Notably, LPS administration to TLR4(-/-) mice produces results similar to those observed in untreated wild-type counterparts, reinforcing the role of this receptor in the glial response to injury. Therefore, our results suggest that the overexpression of the TLR4 receptor results in augmented astrogliosis/microglial reactions and the excessive loss of synapses postinjury, which may, in turn, affect the motoneuronal regenerative response and functionality. Additionally, treatment with LPS increases the expression of beta 2-microglobulin, a subcomponent of MHC I. Importantly, the absence of TLR4 results in imbalanced axonal regeneration, inducing subsequent improvements and setbacks. In conclusion, our results show the involvement of TLR4 in the process of synaptic remodeling, indicating a new target for future research aimed at developing therapies for CNS and PNS repair1556780CNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo303085/2017-72014/06892-3; 2018/05006-

    Laminin-derived peptide C16 regulates Tks expression and reactive oxygen species generation in human prostate cancer cells

    No full text
    Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity2351587CNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paulo304986/2009-7; 471411/2013-2; 303983/2017-52008/57103-8; 2009/17336-6; 2009/16150-6; 2009/16136-3; 2010/07699-1; 2015/03393-9; 2018/03528-

    IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKb and ER Stress Inhibition

    Get PDF
    Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKb activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKb/NF-kB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKb/NF-kB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKb and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action o

    Polypodium leucotomos targets multiple aspects of oral carcinogenesis and it is a potential antitumor phytotherapy against tongue cancer growth

    No full text
    Abstract Introduction: Oral cancer refers to malignant tumors, of which 90% are squamous cell carcinomas (OSCCs). These malignancies exhibit rapid progression, poor prognosis, and often mutilating therapeutical approaches. The determination of a prophylactic and/or therapeutic antitumor role of the polyphenolic extract Polypodium leucotomos(PL) would be relevant in developing new tools for prevention and treatment. Methods: We aimed to determine the antitumor effect of PL by treating OSCC cell lines with PL metabolites and evaluating its action during OSCC progression in vivo. Results: PL treatment successfully impaired cell cycling and proliferation, migration, and invasion, enhanced apoptosis, and modulated macrophage polarization associated with the tumoral immune-inflammatory response of tongue cancer cell lines (TSCC). PL treatment significantly decreased the expression of MMP1 (p < 0.01) and MMP2 (p < 0.001), and increased the expression of TIMP1 (p < 0.001) and TIMP2 (p < 0.0001) in these cells. The mesenchymal-epithelial transition phenotype was promoted in cells treated with PL, through upregulation of E-CAD (p < 0.001) and reduction of N-CAD (p < 0.05). PL restrained OSCC progression in vivo by inhibiting tumor volume growth and decreasing the number of severe dysplasia lesions and squamous cell carcinomas. Ki-67 was significantly higher expressed in tongue tissues of animals not treated with PL(p < 0.05), and a notable reduction in Bcl2 (p < 0.05) and Pcna (p < 0.05) cell proliferation-associated genes was found in dysplastic lesions and TSCCs of PL-treated mice. Finally, N-cad(Cdh2), Vim, and Twist were significantly reduced in tongue tissues treated with PL. Conclusions: PL significantly decreased OSCC carcinogenic processes in vitro and inhibited tumor progression in vivo. PL also appears to contribute to the modulation of immune-inflammatory oral tumor-associated responses. Taken together, these results suggest that PL plays an important antitumor role in processes associated with oral carcinogenesis and may be a potential phytotherapeutic target for the prevention and/or adjuvant treatment of TSCCs

    Il-6 And Il-10 Anti-inflammatory Activity Links Exercise To Hypothalamic Insulin And Leptin Sensitivity Through Ikkbeta And Er Stress Inhibition.

    No full text
    Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.
    corecore