401 research outputs found

    Scattering by coupled resonating elements in air

    Get PDF
    Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low-frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the openings are much smaller than the wavelength. The problem of scattering by a finite periodic array of such coupled resonators in air is solved using multiple scattering techniques. The resulting model predicts band-gap effects resulting from the resonances of the individual composite scatterers below the first Bragg frequency. Predictions and data confirm that use of coupled resonators results in substantial insertion loss peaks related to the resonances within the concentric configuration. In addition, for both scattering problems experimental data, predictions of the analytical approach and predictions of the equivalent fluid layer approximations are compared in the low-frequency interval

    Vegetation in urban streets, squares, and courtyards

    Get PDF
    One of various ways in which vegetation cover used in the greening of urban areas can help improve the health and well-being of people is in how it changes the acoustic environment. This chapter presents findings of computer simulations and scale modelling to examine and quantify the effectiveness of green roof and green wall (vertical garden) systems in reducing road traffic noise for streets, squares, and roadside courtyards. Noise reduction by sound absorption in reflected and diffracted (over roofs) sound paths is investigated. Particular attention is paid to the importance of vegetation placement relative to the receiver/listening positions. Because the soil substrate used for the vertical walls has good sound absorption properties, it also can be used for green barriers. In this chapter, the effects of a low barrier made of green wall substrate are studied for an installation on the ground and on the top of buildings surrounding a courtyard

    Analysis of the wave propagation properties of a periodic array of rigid cylinders perpendicular to a finite impedance surface

    Full text link
    The effect of the presence of a finite impedance surface on the wave propagation properties of a two-dimensional periodic array of rigid cylinders with their axes perpendicular to the surface is both numerically and experimentally analyzed in this work. In this realistic situation both the incident and the scattered waves interact with these two elements, the surface and the array. The interaction between the excess attenuation effect, due to the destructive interference produced by the superposition of the incident wave and the reflected one by the surface, and the bandgap, due to the periodicity of the array, is fundamental for the design of devices to control the transmission of waves based on periodic arrays. The most obvious application is perhaps the design of Sonic Crystals Noise Barriers. Two different finite impedance surfaces have been analyzed in the work in order to observe the dependence of the wave propagation properties on the impedance of the surface

    Toolbox from the EC FP7 HOSANNA project for the reduction of road and rail traffic noise in the outdoor environment

    Get PDF
    yesThis paper offers a brief overview of innovative methods for road and rail traffic noise reduction between source and receiver. These include using new barrier designs, planting of trees, treatments of ground and road surfaces and greening of building façades and roofs using natural materials, like vegetation, soil and other substrates in combination with recycled materials and artificial elements. The abatements are assessed in terms of numerically predicted sound level reductions, perceptual effects and cost–benefit analysis. Useful reductions of noise from urban roads and tramways are predicted for 1-m-high urban noise barriers and these are increased by adding inter-lane barriers. A 3 m wide 0.3 m high lattice ground treatment, a carefully planted 15-m-wide tree belt and replacing 50 m of paved areas by grassland are predicted to give similar reductions. Tree belts are shown to be very cost-effective and combining tall barriers with a row of trees reduces the negative impact of wind. Green roofs may significantly reduce the noise at the quiet side of buildings

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of <it>Saccharomyces cerevisiae </it>(TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw.</p> <p>Results</p> <p>By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g<sup>-1</sup>.</p> <p>Conclusion</p> <p>A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.</p

    Glucose variability measures and their effect on mortality: a systematic review

    Get PDF
    Objective: To systematically review the medical literature on the association between glucose variability measures and mortality in critically ill patients. Methods: Studies assessing the association between a measure of glucose variability and mortality that reported original data from a clinical trial or observational study on critically ill adult patients were searched in Ovid MEDLINE (R) and Ovid EMBASE (R). Data on patient populations, study designs, glucose regulations, statistical approaches, outcome measures, and glucose variability indicators (their definition and applicability) were extracted. Result: Twelve studies met the inclusion criteria; 13 different indicators were used to measure glucose variability. Standard deviation and the presence of both hypo-and hyperglycemia were the most common indicators. All studies reported a statistically significant association between mortality and at least one glucose variability indicator. In four studies both blood glucose levels and severity of illness were considered as confounders, but only one of them checked model assumptions to assert inference validity. Conclusions: Glucose variability has been quantified in many different ways, and in each study at least one of them appeared to be associated with mortality. Because of methodological limitations and the possibility of reporting bias, it is still unsettled whether and in which quantification this association is independent of other confounders. Future research will benefit from using an indicator reference subset for glucose variability, metrics that are linked more directly to negative physiological effects, more methodological rigor, and/or better reportin
    • …
    corecore