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Abstract
Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an
outer N -slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin
elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated
analytically and through laboratory experiments. The composite scatterer forms a system of
coupled resonators and gives rise to multiple low-frequency resonances. The corresponding
analytical model employs polar angle dependent boundary conditions on the surface of the
N -slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the
low-frequency range the N -slit rigid cylinder can be replaced by an equivalent fluid layer.
Further approximations suggest a simple square root dependence of the resonant frequencies
on the number of slits and this is confirmed by data. The observed resonant phenomena are
associated with Helmholtz-like behaviour of the resonator for which the radius and width of
the openings are much smaller than the wavelength. The problem of scattering by a finite
periodic array of such coupled resonators in air is solved using multiple scattering techniques.
The resulting model predicts band-gap effects resulting from the resonances of the individual
composite scatterers below the first Bragg frequency . Predictions and data confirm that use of
coupled resonators results in substantial insertion loss peaks related to the resonances within
the concentric configuration. In addition, for both scattering problems experimental data,
predictions of the analytical approach and predictions of the equivalent fluid layer
approximations are compared in the low-frequency interval.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Infinite periodic structures do not support wave propagation in
certain frequency intervals known as stop bands (band gaps)
[1, 2]. For finite arrays of periodically arranged scatterers,
referred to as sonic crystals, the stop bands correspond to
the frequency intervals of very low transmission [3–5]. The
position of the stop bands can be tuned to selected frequency
intervals by changing the spacing between the scatterers. This
makes sonic crystals attractive for applications as noise barriers
particularly for narrow band sources.

The performance of the sonic crystals can be improved by
increasing the filling fraction [2, 6], varying the arrangement
of the scatterers [7] and also by replacing the scatterers with

the resonant elements [8–16]. The latter allows increasing
insertion loss in the low-frequency range if the resonant
frequencies of the scatterers lie below the first stop band
associated with the array periodicity. The most obvious choice
for such resonant elements is split ring resonators [9, 13, 15]
which essentially are 2D Helmholtz resonators. Alternatively
an array of thin elastic shells in air has been shown to possess
strong multiple resonances in the low-frequency range [11, 16].

Arrays of composite scatterers such as concentric split ring
resonators [9, 17] are shown to support band gaps generated by
the multiple resonances of each scatterer in the array. In this
paper we investigate the concentric arrangement of two types
of the resonant elements, i.e. thin elastic shells and split ring
resonators with multiple slits, referred to as N -slit cylinders.
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These composite scatterers, referred to as composites, serve
a double purpose. First, they support multiple resonances
including Helmholtz and annular cavity resonances and also
axisymmetric resonance of the elastic shells. The latter is
defined by the geometry of the shell and not by the area
of the cavity that therefore gives advantage in tuning of the
composite multiple resonant behaviour compared with that
for the concentric split ring resonators. It is also shown
that the coupling between two resonators leads to the shift
of the axisymmetric shell resonance to the lower frequency
range. The analogous effect for coupled mechanical oscillator
(multiple degree of freedom system) is well known [18].
Second, for the purpose of creating a noise barrier an array
of elastic shells exposed to the environment would not be
practical. A simple solution is to protect the shells using
outer cylinders containing slits surrounding inner elastic shells
arranged concentrically.

The scattering problem for the hollow cylinder with
non-uniform boundaries has been solved semi-analytically
in [19, 20] and references therein. This involves solving the
linear algebraic system of equations derived from the analytical
evaluation of the integral equations. An alternative approach
has been developed in grating theory [21, 22] where solution
of the studied partial differential equations is subject to the
boundary conditions dependent on the coordinates.

Three configurations involving the N -slit cylinder are
studied in this paper (a) alone, (b) concentric with an inner rigid
cylinder and (c) concentric with an inner elastic shell. To solve
the scattering problem for N -slit cylinders we use boundary
conditions dependent on polar angle [21]. In section 2 this
approach is employed to solve a single composite scatterer
problem that is similar to that solved for an electromagnetic
case [22]. However, in the present model the finite thickness of
the wall of the N -slit cylinder is taken into account. This avoids
the use of adjustable parameters introduced for numerical
stability [21, 22] and provides a more accurate description of
the real structure used in the experiments reported later. The
solution inside slits is replaced by jump conditions [23] that
describe the slit interface as a moving piston. It should be
noted that use of jump conditions to replace the slits makes it
possible to accurately predict the total wave field in the low-
and mid-frequency range.

It is also shown that in the low-frequency range the
slit cylinder can be replaced by an equivalent fluid layer.
The approximations are based on the results derived for the
perforated plate [24–26]. The developed approximations are
of particular interest for studying the low-frequency resonant
behaviour of the single composite arrangement and a finite
periodic array of them. This behaviour is attributed to the
Helmholtz-like resonances with wavelength much bigger than
the characteristic sizes of the cylinder (i.e. radius and width of
the slits).

Experimental validation of the analytical and numerical
predictions has been carried out. In particular, the results
obtained with the grating theory are compared with the low-
frequency approximations for the cylinders with different
number of slits and various inner structure (N -slit cylinder
alone, rigid core and elastic shell core). However, the

analytical models could be used also to study the acoustical
properties of arrays incorporating resonators of various
thickness and with different slit widths.

In section 3 the model is generalized for finite arrays of
N -slit cylinders and composite elements. In section 4 the
experimental setup is described and the model predictions are
compared with the data.

2. Single scatterers

2.1. Formulation

Consider the two-dimensional problem of acoustic wave
scattering by a single N -slit rigid cylindrical shell of thickness
h and external radius ro. The sound is generated by the
cylindrical point source placed at the origin of the coordinate
system which is defined by either the Cartesian (x, y) or polar
(r, θ) coordinates. Throughout the paper the time-harmonic
dependence is taken as exp(−iωt). The widths of consecutive
slits in the Oxy plane are denoted by dn, n = 1, . . . , N and
they are infinitely long in the direction of the cylinder main
axis Oz, see figure 1(a). The external length of the rigid arc
is given by Dn. It is also assumed that the thickness of the
rigid shell is much smaller than its radius so that the following
geometric simplifications can be applied:

(a) Internal and external arc lengths of the rigid strip have the
same length;

(b) Internal and external arcs subtend the same angle.
(c) The angle φn subtended by the arc of nth slit and its width

dn are related by dn = φnro, n = 1, . . . , N

(d) The angle ψm subtended by the arc between slit (n − 1)
and slit n and its width Dm are related by Dm = ψmro,

m = 1, . . . , N .

Without loss of generality it is assumed that radius of the vector
passing through the middle of the first slit makes either zero or
π angle with the Ox axis.

For simplicity, the acoustic environments outside, inside
of the N -slit cylinder and in the slits are assumed to be identical
and are described by density ρ and sound speed c. We consider
three configurations: (a) an N -slit cylinder alone, (b) with a
rigid cylindrical core inside and (c) with an elastic shell inside.

The displacement potential p(r) in the acoustic medium
satisfies the Helmholtz equation

�pα + k2pα = 0, (1)

where k = ω/c is the wavenumber, index α relates solution
p to one of the regions (i.e. ‘o’ outside the configuration, ‘i’
inside it and ‘s’ within the slits) and Laplacian � is given by
either

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
or

∂2

∂x2
+

∂2

∂y2
.

The outer solution po(r) also satisfies Somerfeld’s
radiation conditions

∂po

∂r
− ikpo = o(r−1/2), as r → ∞, (2)

where r =
√

x2 + y2.
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Figure 1. (a) Cross-section of composite element consisting of a concentric arrangement of an outer 4-slit rigid cylinder and an inner elastic
cylindrical shell. (b) Geometry of the slit.

To proceed with the boundary conditions imposed on
the surface of the N -slit cylinder we first solve an auxiliary
problem for the slits. The geometry of this problem is
illustrated in figure 1(b). Waves propagating inside the slit
are described by plane wave solution as

ps = C1eiky + C2e−iky, (3)

where C1 and C2 are unknown coefficients. It is assumed that
contribution of the x-dependent components to ps is negligible
when slits are small compared with the wavelength (that is
kdn � 1 and kh � 1).

Solution (3) is subject to the continuity conditions imposed
on the slit faces y = ±h/2 as

pα = ps,

qα = ∂ps

∂y
,

(4)

where qα = ∂pα/∂n is the normal derivative on the slit faces
and index α = o, i. Using solution (3) and its unknown
coefficients C1 and C2, equations (4) can be transformed to
the jump conditions [23]

pi = po − hqo,

qi = k2hpo + qo,
(5)

that relate the wave field inside the N -slit cylinder to that of the
outer region at the slit interface. Note that due to assumption
kh � 1 the trigonometric functions in (5) are replaced by their
leading orders.

The solution of equation (1) is subject to the jump
conditions (5) as well as to the Neumann conditions imposed
on the rigid surface of the N -slit cylinder. The former and the
latter can be combined into the set of two boundary conditions
[21] that are

∂pi

∂r
= ∂po

∂r
+ f (θ)k2hpo,

∂po

∂r
− f (θ)

h
(po − pi) = 0,

(6)

where stepwise function f (θ) of the polar angle θ introduces
the distribution of slits along the N -slit cylinder surface over

the interval θ ∈ [0, 2π ] as

f (θ) =



1 if θ ∈ [−φ1/2, φ1/2] ∪ · · · ∪ [2π − φ1

/2 − φN − ψN, 2π − φ1/2 − ψN ],
0 otherwise.

(7)

For the non-zero value of this function equations (6) are
transformed to the jump conditions (5) whereas the Neumann
conditions can be obtained from (6) by setting f (θ) to zero.

The periodic angle distribution ofN slits can be introduced
through the alternative form of f (θ) that is

f (θ) =
N∑

n=2

{
H

(
θ − 2π(n − 1)

N
+ φn/2

)

−H

(
θ − 2π(n − 1)

N
− φn/2

)}

+
1∑

j=0

{H (θ − 2πj + φ1/2) − H (θ − 2πj − φ1/2)} ,

(8)

where H(θ) is the Heaviside function.
The total wave field outside the slit cylinder is represented

by po which can be found as

po = H
(1)
0 (kr) +

+∞∑
n=−∞

AnH
(1)
n (kr̂)einθ̂ , (9)

where r̂(r, θ) and θ̂ (r, θ) are the polar coordinates of receiver
with origin placed at the centre of the scatterer and An are
unknown coefficients. The solution inside the slit cylinder is
given by

pi =
+∞∑

n=−∞

[
BnJn(kr̂) + CnYn(kr̂)

]
einθ̂ , (10)

where coefficients Bn and Cn have to be found. The coefficient
Cn can be derived in terms of Bn or set to zero according to
the type of the core that results in the following:

Cn = BnCn, n ∈ Z, (11)

3
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where

Cn = 0, N -slit cylinder alone, (12)

Cn = −J ′
n(ka1)

Y ′
n(ka1)

, rigid core, (13)

Cn = −[
[J ′

n(kR)]2[1 − (ksR)2 + n2]
]

×[
J ′

n(kR)Y ′
n(kR)[1 − (ksR)2 + n2] + [n2 − (ksR)2]

×ρ(ρsπRh)−1
]−1

, elastic shell core, (14)

where primes (′) denote the derivative with respect to polar
coordinate r̂ . In equation (14) the elastic shell is described by
frequency parameter ks = ω/cs, density ρs, dilatational wave
speed cs, radius of the elastic shell mid-surface R = (a1+a2)/2
and its half thickness hs = (a1 − a2)/2. Here the dilatational
wave speed cs for a thin elastic plate is given by

cs =
√

E

ρs
(
1 − ν2

) , (15)

with Young’s modulus E and Poison’s ratio ν. In this paper
we consider thin viscoelastic shells made of latex [16]. For
the numerical predictions the size of each elastic shell is
always defined by the outer radius a1 = 0.02 m and thickness
2hs = 0.000 25 m.

In order to find the unknown coefficients An we apply
Graf’s addition theorem [28] to the outer solution (9). This
enables us to express (r, θ) in terms of (r̂, θ̂ ) [16]. Then,
substituting (9) and (10) into the boundary conditions (6) and
taking the inner product

∫ 2π

0 〈·〉 exp(−imθ) dθ we arrive at
infinite algebraic system of equations in An, n ∈ Z, variables
as follows:

∞∑
n=−∞

An

{
δm,n2πhH(1)

n

′
(kro)

−Fn−m

[
H(1)

n (kro) − H(1)
n

′
(kro)In

]

+
k2h

2π
H(1)

n (kro)

∞∑
j=−∞

Fj−mFn−j Ij

}

=
∞∑

n=−∞
H(1)

n (kQ)e−in(π+α)

{
−δm,n2πhJ ′

n(kro)

+Fn−m

[
Jn(kro) − J ′

n(kro)In

]
−k2h

2π
Jn(kro)

∞∑
j=−∞

Fj−mFn−j Ij

}
, m ∈ Z, (16)

where δm,n is Kronecker delta, vector Q = Q(cos α, sin α) is
the radius vector to the centre of the slit cylinder,

In = Jn(kri) + CnYn(kri)

J ′
n(kri) + CnY ′

n(kri)
, (17)

and Fn is the Fourier transform of function f (θ) given by

Fn =




N∑
l=1

φl for n = 0,

2

n

N−1∑
l=0

sin

(
nφl

2

)
e−2inπl/N for n 	= 0.

(18)

Note that factor Cn and the geometrical parameters of the slits
only appear in In and Fn, respectively. This makes form of
system (16) invariant with respect to scatterer core type and
the arrangement and size of the slits.

Taking φl = 0, l ∈ Z, the solutions of system (16) is
reduced to the case of scattering by rigid cylinder that is

Am = − J ′
m(kro)

H
(1)
m

′
(kro)

H (1)
m (kQ)e−im(π+α), m ∈ Z. (19)

To find the numerical solution the infinite system (16) has
to be truncated at some number m, n, j = −M, . . . , M . In
general, the convergence of the numerical solution is dependent
on the radius ro of the N -slit cylinder, number of slits and
their angles φl (i.e. their length) as well as on the frequency.
Reducing the angle φn of the slit results in faster convergence
so that numerical solution approaches the value defined in
(19). It is found that for kro < 5 and φl < 0.1, l ∈ Z,

truncation number M between 30 and 40 gives accurate results
to less than three significant figures. Throughout this paper we
use M = 35.

2.2. Results

Knowing the coefficients An, n ∈ Z, enables us to compute
scatterer insertion loss given by

IL = 20 log10

∣∣∣∣∣H
(1)
0 (kor)

po

∣∣∣∣∣ , (20)

with acoustic potential po found by formula (9).
The insertion loss computed for a single N -slit rigid

scatterer is compared with data in figure 2 (the experimental
setup is described in section 4). The results illustrated in
figures 2(a)–(c) are obtained for N -slit cylinders alone and
with a rigid core. For the given scatterer the prediction
exhibits Helmholtz resonance in the low-frequency range (i.e.
kro < 1). In both semi-analytical results and data, this resonant
behaviour is observed around 600 Hz for a single slit rigid
cylinder, see figure 2(a), and around 1500 Hz for a 4-slit rigid
cylinder, see figure 2(b). It is observed that increasing the
number of slits results in significant shift of this Helmholtz-
type resonance towards higher frequencies. The resonance can
also be shifted by reducing the cavity area. This effect is seen
in figure 2(c) where the presence of a concentric internal rigid
cylinder results in a shift of the resonance to a higher frequency
f ≈ 1700 Hz.

The second type of the resonant behaviour observed in
figure 2 is related to the cut-off frequency of the acoustic mode
in the circular/annular cavity. For the single slit rigid cylinder
this resonance is found around 4200 Hz (figure 2(a)). The 4-slit
rigid cylinder (figure 2(b)) exhibits this type of resonance at
a slightly higher frequency f ≈ 4400 Hz. For the annular
cavity formed by the concentric 4-slit rigid cylinder and rigid
internal cylinder one of the cut-off frequencies can be found
around 3500 Hz (figure 2(c)).

Figure 2(d) illustrates predicted and measured insertion
losses for a 4-slit rigid cylinder with an inner elastic shell.
The presence of the inner elastic shell with radius a0 = 0.02 m

4
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Figure 2. Semi-analytical predictions (----) compared with data (——) for single scatterers. Insertion losses are computed at the point
(1.5775, 0) m. The rigid shell has outer radius ro = 0.0275 m, thickness h = 0.002 m and N identical slits of width dn ≈ 0.004 m,
n = 1, . . . , N . (a) Single slit rigid cylinder (1S); (b) N -slit rigid cylinder with N = 4 uniformly distributed slits (4S); (c) Concentric
arrangement with outer 4S and inner rigid cylinders with a1 = 0.011m (d) Concentric arrangement with outer 4S rigid cylinder and inner
latex elastic shell.

causes resonant behaviour to appear around 1000 Hz, 2700 Hz
and 3400 Hz. The first two resonances can be related to
the interaction of the axisymmetric resonance of the elastic
shell and the Helmholtz resonance. The frequency of the
axisymmetric resonance of the elastic shell, which is originally
at about 1200 Hz, is decreased to about 1000 Hz by the
concentric arrangement. The second resonance at f ≈
2700 Hz is related to the Helmholtz resonance. This frequency
is higher than that for the empty slit cylinder due to the effective
reduction in the size of the cavity.

2.3. Low-frequency approximations

In the low-frequency range a simpler approximation can
be used to describe scattering by N -slit cylinders. The
approximation is based on the results derived by Horace
Lamb [24] for the electromagnetic waves transmitted through
a metallic grating. Here we only consider a case when N

identical slits of width dn = d, n = 1, . . . , N , are distributed
periodically along the scatterer surface. In this case N -slit
cylinder can be replaced by a homogeneous fluid shell. The
latter is characterized by two effective parameters that are
density ρl and speed of sound cl .

Similar approximations have been used for a periodic
array of circular scatterers [27]. The fluid layer is defined
through the thickness hl = hF and density ρl = ρ/F2

with filling fraction F = Nd/(2πro) satisfying the following
conditions:

F <
1

4
and λ = c

f
> F . (21)

The parameters hl and ρl were obtained by matching
transmission coefficients derived for the infinite homogeneous
and perforated plates. Having thickness as an effective
parameter for the infinite plate gives quite accurate results in the
low-frequency regime. However, the fact that hl is not equal
to the actual thickness of the element leads to unnecessary
complications in the model for the cylindrical shell.

In contrast here the thickness of the equivalent fluid layer
is made equal to the actual thickness of the N -slit cylinder
and, therefore, the inner and outer radii of the corresponding
fluid shell are uniquely defined through those of the N -slit
cylinder. The obtained approximation gives first resonance
position within 5% of that for the N -slit cylinder provided that
length of d satisfies conditions (21).

To find the unknown density ρl and speed of sound cl we
first write down the plane wave transmission coefficient of a
fluid layer of thickness h as

T = 4Z−1e−ikh

(1 + Z−1)2e−iklh − (1 − Z−1)2eiklh
, Z = ρlcl

ρc
,

(22)

5
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where kl is the wave number in the fluid layer and Z is its
relative impedance. Note that coefficient T is derived for the
plane waves propagating perpendicular to the surface of the
layer. In the low-frequency regime when kh � 1 and klh � 1
the transmission coefficient can be approximated by

T ≈ Z−1

Z−1 − 0.5iklh(1 + Z−2)
. (23)

For a perforated plate such that kd � 1 the transmission
coefficient T̂ is described by oscillating piston-type waves
propagating in slits. Using existing analytical results [26] we
arrive at

T̂ = 4Fe−ikh

(1 + Ẑ−1)2e−ikh − (1 − Ẑ−1)2eikh
, (24)

with

Ẑ = F − ikd

F2π3

∞∑
n=1

sin(Fπn)

n3
= F − ik�, (25)

where � is referred to as end correction. The lower limit of
the end correction can be estimated from [24, 25]

� = d

π
log

1

sin(πF/2)
. (26)

By assuming low frequency and small filling fraction (i.e.
F � 1) the coefficient T̂ is approximated as

T̂ ≈ F
F − 0.5ikh

(
1 + F2 + 2�/h

) . (27)

In order to be able to replace the perforated plate by
an effective fluid layer we equate T and T̂ . Comparison
of these two coefficients gives relative impedance Z and the
relationship between wave numbers kl and k in the following
forms

Z = 1

F
,

kl = k

h

(
h +

2�

1 + F2

)
≈ k

h
(h + 2�) .

(28)

It is then possible to derive the density and sound speed of the
effective fluid layer as

cl = h

h + 2�
c, (29)

ρl = h + 2�

hF
ρ. (30)

To derive the solution of the appropriate scattering
problem for the layered cylinder continuity boundary
conditions have to be imposed at the faces r = ro, ri of the
fluid layer in the following form

pl = − ρ

ρl

pα,

∂pl

∂r
= ∂pα

∂r
,

(31)

where solutions pα are given by (9) and (10) whereas solution
inside the fluid layer is defined through the new set of constants
Dn and En, n ∈ Z, as

pl =
+∞∑

n=−∞
[DnJn(kl r̂) + EnYn(kl r̂)]e

inθ̂ . (32)

Note that conditions (31) and solution (32) replace the
boundary conditions (6) imposed at the faces of the N -slit
cylinder.

Using boundary conditions (31) the unknown coefficients
An, Dn,En and Cn can be found. The coefficient An takes the
following form

An = −ZnH
(1)
n (koQ)e−in(π+α), (33)

where

Zn=ρlW1W3J
′
n(kro)−ρJn(kro)[W1J

′
n(klro) + W2Y

′
n(klro)]

ρlW1W3H′
n(ro) − ρHn(ro)[W1J ′

n(klro) + W2Y ′
n(klro)]

,

(34)

within which

Hn(ro) = H(1)
n (kro),

W1 = [−ρY ′
n(klri)Yn(kri) + ρlYn(klri)Y

′
n(kri)]Cn

+ρlJ
′
n(kri)Yn(klri) − ρJn(kri)Y

′
n(klri),

W2 = [ρJ ′
n(klri)Yn(kri) − ρlJn(klri)Y

′
n(kri)]Cn

−ρlJ
′
n(kri)Jn(klri) + ρJn(kri)J

′
n(klri),

W3 = W1Jn(klro) + W2Yn(klro)

W1
, (35)

with Cn defined in (12).
To validate the low-frequency approximation its predic-

tions are compared with those of the model presented in
section 2.2. In figure 3 the results are shown for the same
types of scatterers. The accuracy of the approximation deteri-
orates with increase in frequency. However, in the frequency
range that is inside the limit (21) the approximation repro-
duces the shift of the resonances observed for the concentric
arrangement in figures 3(c) and (d).

The low-frequency resonance displayed in figure 3 below
2000 Hz can be found by constructing approximation of the
appropriate eigenvalue solution. In the eigenvalue problem the
outer acoustic potential (9) is defined through Bessel functions
of second kind only. The solution of this problem corresponds
to zeros of the determinant of coefficient An in (33) with
Hn(ro) = Yn(kro). To obtain the approximations of the
resonant frequencies we need to consider two different cases
defined by the core type factor Cn in (12)–(14). For N -slit
cylinders that are either empty or concentric with an inner rigid
cylinder the leading order approximations can be derived by
assuming that

kro = O(β), klro = O(β),

ρ

ρl

= O(β2),
(36)

where β � 1 is a small parameter. These four relations define
the frequency regime and contrast between fluid layer and
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outer/inner environment. Note that according to equation (30)
and the assumption that F � 1, density ρl is always much
greater than ρ.

Expanding Bessel functions and collecting similar orders
of smallness the first resonant frequency, i.e. n = 0 can be
approximated by

f = c

2π

√
2ρ

ρl(r
2
i − a2

1) log(ro/ri)
. (37)

The resulting values of resonant frequency can be further
approximated using the fact that ratios h/ri and h/ro are small.
This follows from the assumption made in the beginning of
section 2.1. The expansion log(ro/ri) = h/ri + O(h2/r2

i ) and
substitution of equation (30) give

f ≈ c

2π

√
Nd

π(r2
i − a2

1)(h + 2�)
. (38)

For a single slit N = 1 equation (38) reduces to the well-
known value of Helmholtz resonance. From equation (38) it
is also seen that increasing the number of slits leads to the
shift of the Helmholtz resonance towards higher frequencies
by approximately

√
N . This is in accordance with the

results observed in figures 3(a) and (b) which show a shift of
Helmholtz resonance frequency by a factor of 2 as N increases
from 1 to 4.

Next is considered the case of the concentric N -slit
cylinder and elastic shell which is described by factor Cn

in equation (14). The interaction of the axisymmetric and
Helmholtz resonances leads to the considerable shift of
the low-frequency resonance as well as the high-frequency
resonances. The new position of the low-frequency resonance
can be approximated by introducing the following order of
smallness of the physical and geometrical parameters:

kro = O(β), klro = O(β),

ρ

ρs
= O(β3),

ρl

ρs
= O(β),

cs

c
= O(β),

cs

cl

= O(β),

hs

R
= O(β).

(39)

For n = 0 the leading order approximation of the resonant
frequency becomes

f = c

2π

{
1

2hsR(r2
i − R2) log(ro/ri)

×
[(

ρ

ρs
r2

i +
c2

s

c2

hs

R
(r2

i − R2)

)
log

ro

ri
+ 2

ρ

ρl

hsR

±
[ [(

ρ

ρs
r2

i +
c2

s

c2

hs

R
(r2

i − R2)

)
log

ro

ri
− 2

ρ

ρl

hsR

]2

+ 8
ρ

ρl

ρ

ρs
hsR

3 log
ro

ri

]1/2
]}1/2

. (40)

In this equation the presence of two solutions explains the
interaction of the first two low-frequency resonances. Two
limiting cases can be constructed which show the degeneration
of the two resonances into single one. It can be seen that if
radii ri and ro tend to infinity equation (40) transforms to the
resonance of the elastic shell under membrane compression
loading [16], i.e.

f = c

2π

1

R

√
c2

s

c2
+

R

hs

ρ

ρs
. (41)

Comparison of the resonant frequency predicted by (41)
for an elastic shell made of latex with the smallest value
in (40) obtained for the concentric 4S rigid cylinder and
latex elastic shell enables us to estimate the shift of the
resonance observed in the composite. The numerical value
of the axisymmetric resonance (41) is f ≈ 1270 Hz whereas
the lowest axisymmetric resonance of the composite is
f ≈ 1060 Hz. Thus a reduction in the frequency of the
axisymmetric elastic shell resonance by about 200 Hz is
predicted.

Equation (40) can also be reduced to the form of the
resonant frequency (37) by assuming higher contrast in (39)
between the fluid and elastic media.

3. Arrays of scatterers

3.1. Formulation

The method developed in the previous section can now
be adapted to finite arrays of scatterers. We first formulate the
method of multiple scattering that is described by the
superposition of scattered wave fields of each element of
the array [5] and boundary conditions (6) imposed on the
surface of all scatterers in the array. As a result the solution
po of the Helmholtz equation (1) in the acoustic environment
outside scatterers takes the following form

po(r, θ) = H
(1)
0 (kr) +

N∑
m=1

+∞∑
n=−∞

Am
n H(1)

n (kr̂m) exp(inθ̂m),

(42)

where N is the number of scatterers in the array, variables
r̂m(r, θ), θ̂m(r, θ) are the polar coordinates with origin in the
centre of scatterer of index m and Am

n are unknown coefficients.
The form of the solution inside of the mth slit cylinder is
the same as in the case of single scatterer problem that is
equation (10).

Using Graf’s addition theorem we can rewrite solution
(42) in terms of polar coordinates (r̂m, θ̂m) of mth scatterer
that gives

po(r̂m, θ̂m) =
+∞∑

n=−∞

{
Jn(kr̂m)H (1)

n (kQm)e−in(π+αm)

+ Am
n H(1)

n (kr̂m)

+
N∑

p=1, p 	=m

+∞∑
q=−∞

Ap
q Jn(kr̂m)H

(1)
q−n(kQmp)ei(q−n)(αmp+π)

}

×einθ̂m , m = 1, . . . , N (43)
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Figure 3. Solution (9)–(16) (——) for single N -slit scatterer compared with its approximations (----) defined by (29), (30) and (33).
Insertion loss is computed at the point (1.5775, 0) m. (a) 1S; (b) 4S; (c) concentric arrangement with outer 4S and inner rigid cylinders with
a1 = 0.011 m; (d) Concentric arrangement with outer 4S rigid cylinder and inner latex elastic shell.

where vector Qm = Qm(cos αm, sin αm) is the radius
vector to the centre of mth scatterer, vector Qmp =
Qmp(cos αmp, sin αmp) defines the position of pth scatterer
with respect to mth scatterer and Qm, Qmp > r̂m that is the
requirement of addition theorem. Expansion (43), along with
the inner solution (10), is subject to the boundary conditions
(6). This results in the infinite algebraic system of equations
in Am

n , m = 1, . . . , N , n ∈ Z, variables given by

∞∑
n=−∞

Ap
n

{
δm,n2πhH(1)

n

′
(kro,p)

−F
p
n−m[H(1)

n (kro,p) − H(1)
n

′
(kro,p)Ip

n ]

+
k2h

2π
H(1)

n (kro,p)

∞∑
j=−∞

F
p

j−mF
p

n−j I
p

j

}

+
N∑

s=1, s 	=p

∞∑
n=−∞

∞∑
v=−∞

As
nH

(1)
n−v(kQps)e

−i(n−v)(π+αps)

×
{

δm,v2πhJ ′
n(kro,p) − F

p
v−m[Jn(kro,p) − J ′

n(kro,p)Ip
n ]

+
k2h

2π
Jv(kro,p)

∞∑
j=−∞

F
p

j−mF
p

v−j I
p

j

}

=
∞∑

n=−∞
H(1)

n (kQp)e−in(π+αp)

{
−δm,n2πhJ ′

n(kro,p)

+ Fn−m[Jn(kro,p) − J ′
n(kro,p)Ip

n ]

−k2h

2π
Jn(kro,p)

∞∑
j=−∞

F
p

j−mF
p

n−j I
p

j

}
,

m ∈ Z, p = 1, . . . , N , (44)

where factors I
p
m and F

p
m are given by equations (17) and (18),

respectively. The superscript p relates these factors to pth
scatterer. To find unknown coefficients we again use truncated
system of N (2M + 1) algebraic equations. Note that for the
slit angles φ

p

l = 0, l ∈ Z, p = 1, . . . , N , equations (44) are
transformed to the well-known algebraic system describing
multiple scattering problem for an array of rigid cylinders [5].

3.2. Results

Solving the algebraic system of equations (44) enables us to
compute the total wave field (42) and insertion loss (20). The
latter is analysed in this section.

Figure 4(a) shows measured and predicted insertion loss
spectra for a 7×3 array of 4-slit cylinders. The band-gap effect
related to the cavity resonance (see figure 2) and associated
with a high insertion loss peak is predicted and observed in
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Figure 4. Semi-analytical predictions (----) compared with data (——) for 7 × 3 arrays of scatterers. Distances from array to the source and
receiver are 1.5 m and 0.05 m, respectively. The scatterers are arranged in square lattice with lattice constant L = 0.086 m. (a) Empty 4-slit
rigid cylinders (4S); (b) concentric outer 4S cylinder and inner latex elastic shell.

Figure 5. Semi-analytical predictions for 7 × 3 array of composites (——) compared with their low-frequency approximations (----).
Distances from scatterer to the source and receiver are 1.5 m and 0.05 m, respectively. (a) 4S; (b) concentric outer 4S rigid cylinder and
inner latex elastic shell.

the vicinity of f = 1500 Hz. This effect is followed by the
insertion loss peak related to the first Bragg band gap which is
observed around f ≈ 2000 Hz.

In figure 4(b) the insertion loss is computed for the array of
composite scatterers consisting of concentric 4S rigid cylinders
and latex elastic shells. The coupled resonances of this
composite described in section 2.2 generate various band gaps
that result in high insertion loss peaks. One of these peaks is
observed around 1000 Hz and is related to the band gap due
to the shifted axisymmetric resonance of latex elastic shell.
The insertion loss peak associated with the shifted Helmholtz
resonance is observed around 2600 Hz and it follows the first
Bragg-band-gap peak observed around f ≈ 2000 Hz.

3.3. Low-frequency approximations

Here the model of equivalent fluid layer is applied to the
problem of multiple scattering. Using the low-frequency
approximations (29) and (30) together with the boundary
conditions (31) one can derive the analogue of the algebraic

system of equations (44) that is

Am
n +

N∑
p=1, p 	=m

∞∑
q=−∞

Ap
q Zp

q H
(1)
q−n(koQmp)ei(q−n)(π+αmp)

= −H(1)
n (koQm)e−in(π+αm), (45)

where Z
p
q is given by (34) for the scatterer with index p =

1, . . . , N [5]. The truncated linear system of N (2M + 1)

equations is solved to find the unknown coefficients Am
n and,

as a result, the insertion loss (20). The truncation number M

is taken between 5 and 7. This results in substantial reduction
in the computational time compared with that for the full
problem (44).

In figure 5 insertion loss is computed for the same arrays
as considered in section 3.2. It is observed that replacement
of the N -slit rigid cylinder by the equivalent fluid layer gives
results accurate to within 5% in the frequency interval f ∈
(0, 2000) Hz. Therefore, for the given geometry of the array
the proposed approximations accurately predict the presence
of the band gaps below and including the first Bragg band gap.

The band diagrams plotted in figures 6(a) and (b) are
aligned with the insertion loss spectra obtained previously in
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Figure 6. Band diagram for the infinite periodic array of composites (left inset) compared with the low-frequency approximations of
their finite 7 × 3 arrangement (right inset). All geometrical parameters are identical to those used in figure 5. The enclosed shells in the
infinite periodic structure are taken without viscous effects and their Young’s modulus is identical to that used in [16], figure 6. (a) 4S;
(b) concentric outer 4S rigid cylinder and inner latex elastic shell.

Figure 7. (a) Components of the resonating scatterer: (on the left) photograph of PVC pipe showing the discontinuous form of a (single) slit
and (on the right) photograph of latex elastic shell. (b) Cross section of the concentric arrangement of inner latex cylinder and outer PVC
cylinder with 4 symmetrically placed slits.

figure 5. It is demonstrating that the band gaps coincide with
the maxima of insertion loss. The diagrams also show that the
first band gaps (at 1500 Hz in figure 6(a) and at 1000 Hz in
figure 6(b)) are complete. This results in angular independent
insertion loss peaks bounded in the frequency interval of the
complete band gaps.

4. Laboratory measurements

4.1. Cylinder constructions

2 m long 0.25 mm thick Latex sheets have been formed into
cylinders with outer diameter of 43 mm. This has been
achieved by overlapping edges by a few mm and gluing them
together. Slits have been gouged from the walls of 55 mm
outer diameter PVC pipes. To ensure the structural integrity
of the pipes, rather than making continuous slits along the
complete length of the pipes, the slits were made in sections
of approximately 20 cm length separated by about 2 cm (see
figure 7(a)). Concentric arrangements of pairs of latex and
4-slit PVC cylinders were formed as shown in figure 7(b). To
ensure the central location of each 27.5 mm outer diameter

latex cylinder within the associated 4-slit PVC pipe, each end
of the latex cylinder was secured on to a Perspex cap which
fitted inside the PVC pipe. Smaller PVC pipes with inner
diameters of 22 mm were used inside the 4-slit pipes for some
measurements.

4.2. Measurement system and data analysis

The sound source was a Bruel and Kjaer point source
loudspeaker controlled by a maximum-length sequence system
analyzer (MLSSA) system enabling determination of impulse
responses. Measurements were taken of the insertion loss
(IL) spectra for single cylinders and arrays of cylinders in
an anechoic chamber. Figures 8(a) and (b) show an example
measurement arrangement. Supports for the 2 m long cylinders
were provided by holed wooden boards at the top and base of
each array. The lattice constant (L) for the arrays of 4-slit
cylinders and concentric cylinders was 80 mm.

To maintain their shape and vertical orientation, the
latex cylinders were slightly inflated above atmospheric
pressure through a common pipe connecting to a small pump.
During the array measurements, the receiver microphone was
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Figure 8. (a) plan of source, receiver and array, (b) 7 × 3 array of concentric PVC pipe and latex cylinders in the anechoic chamber.

positioned 50 mm from the nearest face of the array but on
the opposite side to the source. The loudspeaker was placed
1.5 m away from the array, such that the source-receiver axis
was normal to the array orientation (see figure 8(a)). Both
source and receiver were 1.2 m above the floor of the chamber
which had sections removed to reduce unwanted reflections
(see figure 8(b)). Insertion loss spectra were calculated by
subtracting signals received without and with the cylinder
array present but with the support structure in place on both
occasions.

5. Concluding remarks

The acoustical properties of three forms of 2D resonators
have been investigated: empty N -slit pipes, a concentric
arrangement with rigid pipe inner and 4-slit pipe outer and
a concentric arrangement of an elastic shell inner and 4-slit
outer pipe. A theoretical formulation uses boundary conditions
dependent on polar angle to represent arbitrary positioned slits.
For simplicity, in the studied geometries the slits are positioned
symmetrically. Jump boundary conditions imposed on the slit
interface are used to represent the solution inside the slits. The
versatility of the proposed method can be applied to various
types of 2D resonators with concentric multilayered/solid
cylinder inner.

It has been found theoretically and experimentally that
increasing the number of slits in an empty pipe causes an
increase in the frequency of the Helmhotz-type resonance. A
low-frequency approximation which models the slit cylinder
by an equivalent fluid layer predicts that the frequency increase
is proportional to the square root of the number of slits
and this has been confirmed experimentally. The concentric
arrangements result in resonances associated with both circular
and annular cavities. With an inner elastic shell, an additional
axisymmetric resonance of the shell is preserved but modified
by the presence of the outer 4-slit pipe. Coupling between
the components of the concentric arrangement results in shifts
in the resonant frequencies corresponding to each element of
the composite configuration. This is similar to the effect that
is observed in mass-spring systems with multiple degrees of
freedom. A low-frequency approximation for the acoustical

properties of the concentric arrangement with an elastic shell
inner correctly predicts the observed frequency shift in the
axisymmetric resonance.

When used in periodic arrays the concentric arrangements
with inner elastic shells and outer 4-slit cylinders result in
additional sound attenuation in the low-frequency range below
the first Bragg band gap while still preserving the Bragg band
gaps. This arrangement is more practical than the use of
unprotected elastic shells, and hence is a potentially useful
basis for a sonic crystal barrier design.
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