66 research outputs found

    Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions

    Get PDF
    Key message Transgenic DRN::erGFP and DRNL::erGFP reporters access the window from explanting Arabidopsis embryos to callus formation and provide evidence for the acquisition of shoot meristem cell fates at the microcalli surface. Abstract The DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) genes encode AP2-type transcription factors, which are activated shortly after fertilisation in the zygotic Arabidopsis embryo. We have monitored established transgenic DRN::erGFP and DRNL::erGFP reporter lines using live imaging, for expression in embryonic suspension cultures and our data show that transgenic fluorophore markers are suitable to resolve dynamic changes of cellular identity at the surface of microcalli and enable fluorescence-activated cell sorting. Although DRN::erGFP and DRNL::erGFP are both activated in surface cells, their promoter activity marks different cell identities based on real-time PCR experiments and whole transcriptome microarray data. These transcriptome analyses provide no evidence for the maintenance of embryogenic identity under callus-inducing high-auxin tissue culture conditions but are compatible with the acquisition of shoot meristem cell fates at the surface of suspension calli

    Kinetic transcriptomic approach revealed metabolic pathways and genotoxic-related changes implied in the Arabidopsis response to ionising radiations

    Get PDF
    Plants exposed to ionising radiation (IR) have to face direct and indirect (oxidative stress) deleterious effects whose intensity depends on the dose applied and led to differential genome regulation. Transcriptomic analyses were conducted with CATMA microarray technology on Arabidopsis thaliana plantlets, 2 and 26 h after exposure to the IR doses 10 Gy and 40 Gy. 10 Gy treatment seemed to enhance antioxidative compound biosynthetic pathways whereas the 40 Gy dose up-regulated ROS-scavenging enzyme genes. Transcriptomic data also highlighted a differential regulation of chloroplast constituent genes depending on the IR dose, 10 Gy stimulating and 40 Gy down-regulating. This probable 40 Gy decrease of photosynthesis could help for the limitation of ROS production and may be coupled with programmed cell death (PCD)/senescence phenomena. Comparisons with previous transcriptomic studies on plants exposed to a 100 Gy dose revealed 60 dose-dependent up-regulated genes, including notably cell cycle checkpoints to allow DNA repairing phenomena. Furthermore, the alteration of some cellular structure related gene expression corroborated a probable mitotic arrest after 40 Gy. Finally, numerous heat-shock protein and chaperonin genes, known to protect proteins against stress-dependent dysfunction, were up-regulated after IR exposure

    CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform

    Get PDF
    CATdb is a free resource available at http://urgv.evry.inra.fr/CATdb that provides public access to a large collection of transcriptome data for Arabidopsis thaliana produced by a single Complete Arabidopsis Transcriptome Micro Array (CATMA) platform. CATMA probes consist of gene-specific sequence tags (GSTs) of 150–500 bp. The v2 version of CATMA contains 24 576 GST probes representing most of the predicted A. thaliana genes, and 615 probes tiling the chloroplastic and mitochondrial genomes. Data in CATdb are entirely processed with the same standardized protocol, from microarray printing to data analyses. CATdb contains the results of 53 projects including 1724 hybridized samples distributed between 13 different organs, 49 different developmental conditions, 45 mutants and 63 environmental conditions. All the data contained in CATdb can be downloaded from the web site and subsets of data can be sorted out and displayed either by keywords, by experiments, genes or lists of genes up to 100. CATdb gives an easy access to the complete description of experiments with a picture of the experiment design

    Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels

    Get PDF
    Photorespiratory metabolism is essential in all oxygenic photosynthetic organisms. In plants, it is a highly compartmentalized pathway that involves chloroplasts, peroxisomes, mitochondria and the cytoplasm. The metabolic pathway itself is well characterized, and the enzymes required for its function have been identified. However, very little information is available on the transport proteins that catalyze the high metabolic flux between the involved compartments. Here we show that the A BOUT DE SOUFFLE (BOU) gene, which encodes a mitochondrial carrier, is involved in photorespiration in Arabidopsis. BOU was found to be co-expressed with photorespiratory genes in leaf tissues. The knockout mutant bou-2 showed the hallmarks of a photorespiratory growth phenotype, an elevated CO2 compensation point, and excessive accumulation of glycine. Furthermore, degradation of the P-protein, a subunit of glycine decarboxylase, was demonstrated for bou-2, and is reflected in strongly reduced glycine decarboxylase activity. The photorespiration defect in bou-2 has dramatic consequences early in the seedling stage, which are highlighted by transcriptome studies. In bou-2 seedlings, as in shm1, another photorespiratory mutant, the shoot apical meristem organization is severely compromised. Cell divisions are arrested, leading to growth arrest at ambient CO2. Although the specific substrate for the BOU transporter protein remains elusive, we show that it is essential for the function of the photorespiratory metabolism. We hypothesize that BOU function is linked with glycine decarboxylase activity, and is required for normal apical meristems functioning in seedlings

    Transcriptomic Analysis Highlights Time-specific Embryonic Adaptation of Mice to the Lack of PrP

    Get PDF
    The physiological function of the PrP remains largely elusive. Its invalidation does not affect mouse survival and induces subtle phenotypes. To potentially assess this conundrum, we first comparatively analyzed the adult brain transcriptome of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic (Zürich PrP0/0 mice) or adult stages (NFH-Cre-Lox mice). Only subtle differences could be evidenced in the adult brains following microarray and QPCR analyses. When performed at an early adult stage, neuronal Prnp disruption appeared to sequentially induce an oxidative stress response and a nervous system remodeling, but it involved a limited number of only slightly modified genes. In sharp contrast, analysis at early embryonic stages, 7.5 and 8.5 dpc, just after the suspected normal time set of the Prnp locus activation, led to a transient perturbation of the transcriptome involving a larger number of genes and pointing to potential pathways related to the PrP physiological function. Overall, our data suggests an early adaptation of the mouse to the potentially detrimental lack of PrP during embryogenesis while its presence is less influential or redundant at later developmental stages

    Control of Flowering and Cell Fate by LIF2, an RNA Binding Partner of the Polycomb Complex Component LHP1

    Get PDF
    Polycomb Repressive Complexes (PRC) modulate the epigenetic status of key cell fate and developmental regulators in eukaryotes. The chromo domain protein LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is a subunit of a plant PRC1-like complex in Arabidopsis thaliana and recognizes histone H3 lysine 27 trimethylation, a silencing epigenetic mark deposited by the PRC2 complex. We have identified and studied an LHP1-Interacting Factor2 (LIF2). LIF2 protein has RNA recognition motifs and belongs to the large hnRNP protein family, which is involved in RNA processing. LIF2 interacts in vivo, in the cell nucleus, with the LHP1 chromo shadow domain. Expression of LIF2 was detected predominantly in vascular and meristematic tissues. Loss-of-function of LIF2 modifies flowering time, floral developmental homeostasis and gynoecium growth determination. lif2 ovaries have indeterminate growth and produce ectopic inflorescences with severely affected flowers showing proliferation of ectopic stigmatic papillae and ovules in short-day conditions. To look at how LIF2 acts relative to LHP1, we conducted transcriptome analyses in lif2 and lhp1 and identified a common set of deregulated genes, which showed significant enrichment in stress-response genes. By comparing expression of LHP1 targets in lif2, lhp1 and lif2 lhp1 mutants we showed that LIF2 can either antagonize or act with LHP1. Interestingly, repression of the FLC floral transcriptional regulator in lif2 mutant is accompanied by an increase in H3K27 trimethylation at the locus, without any change in LHP1 binding, suggesting that LHP1 is targeted independently from LIF2 and that LHP1 binding does not strictly correlate with gene expression. LIF2, involved in cell identity and cell fate decision, may modulate the activity of LHP1 at specific loci, during specific developmental windows or in response to environmental cues that control cell fate determination. These results highlight a novel link between plant RNA processing and Polycomb regulation
    corecore