373 research outputs found
Mechanisms for fast flare reconnection
Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs
Floral and pollinator behaviour of flexistylous Bornean ginger, Alpinia nieuwenhuizii (Zingiberaceae)
Flexistyly is a unique floral mechanism involving extreme curving of the style. It was first described in Chinese ginger (Amomum, Zingiberaceae). This is a pioneer report on flexistylous gingers of Malesia, where most species of this family grow. We observed the floral behaviour and flower visitors in Alpinia nieuwenhuizii Val., a Bornean endemic. Although the floral behaviour and effective pollinators (carpenter bees, Xylocopa) were similar between the Bornean species and the previously reported flexistylous Alpinia, the pollinator behaviour between them strikingly differed with regard to the visit frequency of the pollinators showing a bimodal pattern during the day. This was a better match for the floral behaviour of the flexistylous Alpinia. Some gender differentiation observed between the two types of morphs is also discussed in the present study
Gastroenterology practice in the COVID-19 era: Ghana Association for the Study of Liver and Digestive Diseases (GASLIDD) position statement
The COVID-19 pandemic has impacted healthcare negatively across the globe. The practice of gastroenterology has been affected especially gastrointestinal (GI) endoscopy which is considered high risk for transmission of the virus. As a community of practitioners there is the need to share information and make evidence-based statements to guide GI practice in Ghana. This GASLIDD position statement based on the growing and rapidly evolving body of knowledge is to provide up to date information on the COVID-19 disease and guidance for the practice of gastroenterology in Ghana and beyond. It is to help the GI community of practice to maintain the highest level of health delivery and safety for our patients, staff, community and GI practitioners
Topological modes bound to dislocations in mechanical metamaterials
Mechanical metamaterials are artificial structures with unusual properties,
such as negative Poisson ratio, bistability or tunable vibrational properties,
that originate in the geometry of their unit cell. At the heart of such unusual
behaviour is often a soft mode: a motion that does not significantly stretch or
compress the links between constituent elements. When activated by motors or
external fields, soft modes become the building blocks of robots and smart
materials. Here, we demonstrate the existence of topological soft modes that
can be positioned at desired locations in a metamaterial while being robust
against a wide range of structural deformations or changes in material
parameters. These protected modes, localized at dislocations, are the
mechanical analogue of topological states bound to defects in electronic
systems. We create physical realizations of the topological modes in prototypes
of kagome lattices built out of rigid triangular plates. We show mathematically
that they originate from the interplay between two Berry phases: the Burgers
vector of the dislocation and the topological polarization of the lattice. Our
work paves the way towards engineering topologically protected nano-mechanical
structures for molecular robotics or information storage and read-out.Comment: 13 pages, 6 figures; changes to text and figures and added analysis
on mode localization; see
http://www.lorentz.leidenuniv.nl/~paulose/dislocation-modes/ for accompanying
video
Characteristics of gate-all-around silicon nanowire field effect transistors with asymmetric channel width and source/drain doping concentration
We performed 3D simulations to demonstrate structural effects in sub-20 nm gate-all-around silicon nanowire field effect transistors having asymmetric channel width along the channel direction. We analyzed the differences in the electrical and physical properties for various slopes of the channel width in asymmetric silicon nanowire field effect transistors (SNWFETs) and compared them to symmetrical SNWFETs with uniform channel width. In the same manner, the effects of the individual doping concentration at the source and drain also have been investigated. For various structural conditions, the current and switching characteristics are seriously affected. The differences attributed to the doping levels and geometric conditions are due to the electric field and electron density profile. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745858]ope
Designing Origami-Adapted Deployable Modules for Soft Continuum Arms
© Springer Nature Switzerland AG 2019. Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks
Quantitative Analysis of Serum Procollagen Type I C-Terminal Propeptide by Immunoassay on Microchip
BACKGROUND: Sandwich enzyme-linked immunosorbent assay (ELISA) is one of the most frequently employed assays for clinical diagnosis, since this enables the investigator to identify specific protein biomarkers. However, the conventional assay using a 96-well microtitration plate is time- and sample-consuming, and therefore is not suitable for rapid diagnosis. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. METHODS AND FINDINGS: The microchip was made of cyclic olefin copolymer with straight microchannels that were 300 µm wide and 100 µm deep. For the construction of a sandwich ELISA for procollagen type I C-peptide (PICP), a biomarker for bone formation, we used a piezoelectric inkjet printing system for the deposition and fixation of the 1st anti-PICP antibody on the surface of the microchannel. After the infusion of the mixture of 2.0 µl of peroxidase-labeled 2nd anti-PICP antibody and 0.4 µl of sample to the microchannel and a 30-min incubation, the substrate for peroxidase was infused into the microchannel; and the luminescence intensity of each spot of 1st antibody was measured by CCD camera. A linear relationship was observed between PICP concentration and luminescence intensity over the range of 0 to 600 ng/ml (r(2) = 0.991), and the detection limit was 4.7 ng/ml. Blood PICP concentrations of 6 subjects estimated from microchip were compared with results obtained by the conventional method. Good correlation was observed between methods according to simple linear regression analysis (R(2) = 0.9914). The within-day and between-days reproducibilities were 3.2-7.4 and 4.4-6.8%, respectively. This assay reduced the time for the antigen-antibody reaction to 1/6, and the consumption of samples and reagents to 1/50 compared with the conventional method. CONCLUSION: This assay enabled us to determine serum PICP with accuracy, high sensitivity, time saving ability, and low consumption of sample and reagents, and thus will be applicable to clinic diagnosis
- …