124 research outputs found

    Clionasterol, a Triterpenoid from the Kenyan Marine Green Macroalga Halimeda macroloba

    Get PDF
    The triterpenoid clionasterol (1), a 29 carbon structure compound was isolated from the less polar extract (20% EtOAc in hexanes) of the green alga Halimeda macroloba collected at Shimoni near Mombasa, Kenya. The structure and relative stereochemistry of this compound was elucidated by spectroscopic data, mainly NMR and mass spectrometry. This metabolite was inactive against DLD-1 cells on the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Further experiments on mosquito larvae and brine shrimp lethality confirmed this result

    Total synthesis, structural, and biological evaluation of stylissatin A and related analogs

    Get PDF
    The natural product cyclic peptide stylissatin A (1a) was reported to inhibit nitric oxide production in LPS-stimulated murine macrophage RAW 264.7 cells. In the current study, solid-phase total synthesis of stylissatin A was performed by using a safety-catch linker and yielded the peptide with a trans-Phe7-Pro6 linkage, whereas the natural product is the cis rotamer at this position as evidenced by a marked difference in NMR chemical shifts. In order to preclude the possibility of 1b being an epimer of the natural product, we repeated the synthesis using d-allo-Ile in place of l-Ile and a different site for macrocyclization. The resulting product (d-allo-Ile2)-stylissatin A (1c) was also found to have the trans-Phe7-Pro6 peptide conformations like rotamer 1b. Applying the second route to the synthesis of stylissatin A itself, we obtained stylissatin A natural rotamer 1a accompanied by rotamer 1b as the major product. Rotamers 1a, 1b, and the epimer 1c were separable by HPLC, and 1a was found to match the natural product in structure and biological activity. Six related analogs 2–7 of stylissatin A were synthesized on Wang resin and characterized by spectral analysis. The natural product (1a), the rotamer (1b), and (d-allo-Ile2)-stylissatin A (1c) exhibited significant inhibition of NO.. Further investigations were focused on 1b, which also inhibited proliferation of T-cells and inflammatory cytokine IL-2 production. The analogs 2–7 weakly inhibited NO. production, but strongly inhibited IL-2 cytokine production compared with synthetic peptide 1b. All analogs inhibited the proliferation of T-cells, with analog 7 having the strongest effect. In the analogs, the Pro6 residue was replaced by Glu/Ala, and the SAR indicates that the nature of this residue plays a role in the biological function of these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd

    Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian marine Sponge Aplysinella rhax

    Get PDF
    Ten bromotyrosine alkaloids( 1 ‐ 10 ) were isolated and characterised from the marine sponge Aplysinella rhax ( de Laubenfels 1954) collected from the Fiji Islands, which included one new bromotyrosine analogue, psammaplin P ( 6 ) and two other analogues, psammaplins O ( 5 ) and 4‐bromo‐6‐carbomethoxy salicylic acid ( 7 ), which have not been previously reported from natural sources. HRESIMS, 1D and 2D NMR spectroscopic methods were used in the elucidation of the compounds. Bisaprasin, a biphenylic dimer of psammaplin A, showed moderate activity with IC 50 at 19+/‐ 5 and 29+/‐ 6 μM against Trypanzoma cruzi Tulahuen C4, and the lethal human malaria species Plasmodium falciparum clone 3D7, respectively, while psammaplins A ( 1 ) and D ( 4 ) exhibited low activity against both parasites. This is the first report of the antimalarial and antitrypanosomal activity of the psammaplin‐type compounds. Additionally, the biosynthesis hypotheses of the three natural products ( 5 , 6 and 7 ) were proposed

    Evaluation of the Antioxidant Activity of the Marine Pyrroloiminoquinone Makaluvamines

    Get PDF
    Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma cells. Among the alkaloids studied, makaluvamine J was the most active in all the assays. This compound was able to reduce the mitochondrial damage elicited by the well-known stressor H2O2. The antioxidant properties of makaluvamine J are related to an improvement of the endogenous antioxidant defenses of glutathione and catalase. SHSY5Y assays proved that this compound acts as a Nrf2 activator leading to an improvement of antioxidant defenses. A low concentration of 10 nM is able to reduce the reactive oxygen species release and maintain a correct mitochondrial function. Based on these results, non-substituted nitrogen in the pyrrole plus the presence of a p-hydroxystyryl without a double bond seems to be the most active structure with a complete antioxidant effect in neuronal cells

    Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica)

    Get PDF
    Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL) and unreported antimicrobial activity against Bcc strains

    Tavarua Deoxyriboside A and Jasplakinolide as Potential Neuroprotective Agents: Effects on Cellular Models of Oxidative Stress and Neuroinflammation

    Get PDF
    The oceans harbor a great reservoir of molecules with unknown bioactivities, which could be useful for the treatment of illnesses that nowadays have no cure, such as neurodegenerative diseases. In this work, we evaluated the neuroprotective potential of the marine Fijian compounds tavarua deoxyriboside A and jasplakinolide against oxidative stress and neuroinflammation, crucial mechanisms in neurodegeneration. Both metabolites protected SH-SY5Y human neuroblastoma cells from H2O2 damage, improving mitochondrial function and activating the antioxidant systems of cells. These effects were mediated by their ability of inducing Nrf2 translocation. In BV2 microglial cells activated with lipopolysaccharide, Fijian metabolites also displayed promising results, decreasing the release of proinflammatory mediators (ROS, NO, cytokines) through the reduction of gp91 and NFkB–p65 expression. Finally, we performed a coculture among both cell lines, in which treatment with compounds protected SH-SY5Y cells from activated microglia, corroborating their neuroprotective effects. These results suggest that tavarua deoxyriboside A and jasplakinolide could be used as candidate molecules for further studies against neurodegeneration

    Whole Genome Sequence of Dermacoccus abyssi MT1.1 Isolated from the Challenger Deep of the Mariana Trench Reveals Phenazine Biosynthesis Locus and Environmental Adaptation Factors

    Get PDF
    Dermacoccus abyssi strain MT1.1T is a piezotolerant actinobacterium that was isolated from Mariana Trench sediment collected at a depth of 10898 m. The organism was found to produce ten dermacozines (A‒J) that belonged to a new phenazine family and which displayed various biological activities such as radical scavenging and cytotoxicity. Here, we report on the isolation and identification of a new dermacozine compound, dermacozine M, the chemical structure of which was determined using 1D and 2D-NMR, and high resolution MS. A whole genome sequence of the strain contained six secondary metabolite-biosynthetic gene clusters (BGCs), including one responsible for the biosynthesis of a family of phenazine compounds. A pathway leading to the biosynthesis of dermacozines is proposed. Bioinformatic analyses of key stress-related genes provide an insight into how the organism adapted to the environmental conditions that prevail in the deep-sea
    corecore