846 research outputs found

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P δ\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Using TurbSim stochastic simulator to improve accuracy of computational modelling of wind in the built environment

    Get PDF
    Small wind turbines are often sited in more complex environments than in open terrain. These sites include locations near buildings, trees and other obstacles, and in such situations, the wind is normally highly three-dimensional, turbulent, unstable and weak. There is a need to understand the turbulent flow conditions for a small wind turbine in the built environment. This knowledge is crucial for input into the design process of a small wind turbine to accurately predict blade fatigue loads and lifetime and to ensure that it operates safely with a performance that is optimized for the environment. Computational fluid dynamics is a useful method to provide predictions of local wind flow patterns and to investigate turbulent flow conditions at small wind turbine sites, in a manner that requires less time and investment than actual measurements. This article presents the results of combining a computational fluid dynamics package (ANSYS CFX software) with a stochastic simulator (TurbSim) as an approach to investigate the turbulent flow conditions on the rooftop of a building where small wind turbines are sited. The findings of this article suggest that the combination of a computational fluid dynamics package with the TurbSim stochastic simulator is a promising tool to assess turbulent flow conditions for small wind turbines on the roof of buildings. In particular, in the prevailing wind direction, the results show a significant gain in accuracy in using TurbSim to generate wind speed and turbulence kinetic energy profiles for the inlet of the computational fluid dynamics domain rather than using a logarithmic wind-speed profile and a pre-set value of turbulence intensity in the computational fluid dynamics code. The results also show that small wind turbine installers should erect turbines in the middle of the roof of the building and avoid the edges of the roof as well as areas on the roof close to the windward and leeward walls of the building in the prevailing wind direction

    Rapid, cost-effective, sensitive and quantitative detection of Acinetobacter baumannii from pneumonia patients

    Get PDF
    BACKGROUND AND OBJECTIVES: Pneumonia with Acinetobacter baumannii has a major therapeutic problem in health care settings. Decision to initiate correct antibiotic therapy requires rapid identification and quantification of organism. The aim of this study was to develop a rapid and sensitive method for direct detection of A. baumannii from respiratory specimens. MATERIALS AND METHODS: A Taqman real time PCR based on the sequence of bla(oxa-51) was designed and used for direct detection of A. baumannii from 361 respiratory specimens of patients with pneumonia. All specimens were checked by conventional bacteriology in parallel. RESULTS: The new real time PCR could detect less than 200 cfu per ml of bacteria in specimens. There was agreement between the results of real time PCR and culture (Kappa value 1.0, p value<0.001). The sensitivity, specificity and predictive values of real time PCR were 100%. The prevalence of A. baumannii in pneumonia patients was 10.53 % (n=38). Poly-microbial infections were detected in 65.71% of specimens. CONCLUSION: Acinetobacter baumannii is the third causative agent in nosocomial pneumonia after Pseudomonas aeroginosa (16%) and Staphylococcus aureus (13%) at Tehran hospitals. We recommend that 104 CFU be the threshold for definition of infection with A. baumannii using real time PCR

    Classical and quantum spinor cosmology with signature change

    Full text link
    We study the classical and quantum cosmology of a universe in which the matter source is a massive Dirac spinor field and consider cases where such fields are either free or self-interacting. We focus attention on the spatially flat Robertson-Walker cosmology and classify the solutions of the Einstein-Dirac system in the case of zero, negative and positive cosmological constant Λ\Lambda. For Λ<0\Lambda<0, these solutions exhibit signature transitions from a Euclidean to a Lorentzian domain. In the case of massless spinor fields it is found that signature changing solutions do not exist when the field is free while in the case of a self-interacting spinor field such solutions may exist. The resulting quantum cosmology and the corresponding Wheeler-DeWitt equation are also studied for both free and self interacting spinor fields and closed form expressions for the wavefunction of the universe are presented. These solutions suggest a quantization rule for the energy.Comment: 13 pages, 4 figure

    Comprehensive Analysis of Damage Progression in High-performance Thermoplastic Composites Through Multi-instrumental Structural Health Monitoring Approaches

    Get PDF
    The failure behavior of carbon fiber/poly(ether ketone ketone) (CF/PEKK) composites manufactured via automated fiber placement (AFP) followed by subsequent consolidation in autoclave is studied. Multi-instrumental structural health monitoring (SHM) approaches are used to analyze damage development stages and and damage typesin high performance thermoplastic composite laminates. Void analysis, and density measurement, and optical microscopy reveal the effect of secondary consolidation through autoclave on the microstructure of the composite laminates. An interlaminar void reduction from 5.65% to 0.46% are observed. Acoustic emission (AE), digital image correlation (DIC), and infrared thermography (IRT) techniques during tensile tests provide complementary understanding of the physics behind the critical damage types occurring in the material, such as edge splitting. Slope of the cumulative AE counts and percentage of total number of hits signify two distinct stages of failure, each associated with a dominant failure mode. Also it is evident that the high energy AE hits are corresponding to macro level damage events which are captured by the IRT in the form of various edge splitting. The initiation of these damage events can be anticipated through concurrent monitoring of DIC strain maps

    Spin and orbital states in La1.5 Sr0.5 CoO4 studied by electronic structure calculations

    Get PDF
    Electronic structure of the layered perovskite La1.5Sr0.5CoO4 with a checkerboard Co2+/Co3+ charge order is studied, using the local-spin-density approximation plus Hubbard U calculations including also the spin-orbit coupling and multiplet effect. Our results show that the Co2+ ion is in a high spin state (HS, t(2g)(5)e(g)(2)) and Co3+ low spin state (LS, t(2g)(6)). Due to a small Co2+ t(2g) crystal field splitting, the spin-orbit interaction produces an orbital moment of 0.26 mu(B) and accounts for the observed easy in-plane magnetism. Moreover, we find that the Co3+ intermediate spin state (IS, t(2g)(5)e(g)(1)) has a multiplet splitting of several tenths of eV and the lowest-lying one is still higher than the LS ground state by 120 meV, and that the Co3+ HS state (t(2g)(4)e(g)(2)) is more unstable by 310 meV. Either the IS or HS Co3+ ions would give rise to a wrong magnetic order and anisotropy

    Predicting clinical diagnosis in Huntington's disease: An imaging polymarker.

    Get PDF
    OBJECTIVE: Huntington's disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD. METHOD: A multivariate machine learning approach was applied to resting-state and structural magnetic resonance imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between preHD and controls, and within the preHD group in relation to "estimated" and "actual" proximity to disease onset. Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification accuracy. RESULTS: Classification performance for preHDs versus controls was greatest when all measures were combined. The resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in that time scale based on the currently adopted statistical models. INTERPRETATION: We propose that a holistic multivariate machine learning treatment of brain abnormalities in the premanifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD, with implications for prognostication and preclinical trials. Ann Neurol 2018;83:532-543.SLM is funded by a National Institute for Health Research (NIHR) Translational Research Collaboration for Rare Diseases fellowship. This research has been funded/supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. RAB is funded by the NIHR Cambridge Biomedical Research Centre and the Cambridge University NHS Foundation Trust. RED is employed on an EC Marie-Curie CIG, awarded to AH, SJT, EJ and RS receive funding from a Wellcome Collaborative Award (200181/Z/15/Z

    Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease

    Get PDF
    OBJECTIVES: Visuospatial processing deficits have been reported in Huntington’s disease (HD). To date, no study has examined associations between visuospatial cognition and posterior brain findings in HD. METHODS: We compared 119 premanifest (55> and 64<10.8 years to expected disease onset) and 104 early symptomatic (59 stage-1 and 45 stage-2) gene carriers, with 110 controls on visual search and mental rotation performance at baseline and 12 months. In the disease groups, we also examined associations between task performance and disease severity, functional capacity and structural brain measures. RESULTS: Cross-sectionally, there were strong differences between all disease groups and controls on visual search, and between diagnosed groups and controls on mental rotation accuracy. Only the premanifest participants close to onset took longer than controls to respond correctly to mental rotation. Visual search negatively correlated with disease burden and motor symptoms in diagnosed individuals, and positively correlated with functional capacity. Mental rotation (“same”) was negatively correlated with motor symptoms in stage-2 individuals, and positively correlated with functional capacity. Visual search and mental rotation were associated with parieto-occipital (pre-/cuneus, calcarine, lingual) and temporal (posterior fusiform) volume and cortical thickness. Longitudinally, visual search deteriorated over 12 months in stage-2 individuals, with no evidence of declines in mental rotation. Conclusions: Our findings provide evidence linking early visuospatial deficits to functioning and posterior cortical dysfunction in HD. The findings are important since large research efforts have focused on fronto-striatal mediated cognitive changes, with little attention given to aspects of cognition outside of these areas. (JINS, 2016, 22, 595–608
    • …
    corecore