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Predicting Clinical Diagnosis in
Huntington’s Disease: An Imaging

Polymarker
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Objective: Huntington’s disease (HD) gene carriers can be identified before clinical diagnosis; however, statistical
models for predicting when overt motor symptoms will manifest are too imprecise to be useful at the level of the
individual. Perfecting this prediction is integral to the search for disease modifying therapies. This study aimed to
identify an imaging marker capable of reliably predicting real-life clinical diagnosis in HD.
Method: A multivariate machine learning approach was applied to resting-state and structural magnetic resonance
imaging scans from 19 premanifest HD gene carriers (preHD, 8 of whom developed clinical disease in the 5 years
postscanning) and 21 healthy controls. A classification model was developed using cross-group comparisons between
preHD and controls, and within the preHD group in relation to “estimated” and “actual” proximity to disease onset.
Imaging measures were modeled individually, and combined, and permutation modeling robustly tested classification
accuracy.
Results: Classification performance for preHDs versus controls was greatest when all measures were combined. The
resulting polymarker predicted converters with high accuracy, including those who were not expected to manifest in
that time scale based on the currently adopted statistical models.
Interpretation: We propose that a holistic multivariate machine learning treatment of brain abnormalities in the pre-
manifest phase can be used to accurately identify those patients within 5 years of developing motor features of HD,
with implications for prognostication and preclinical trials.
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Huntington’s disease (HD) is an autosomal-dominant,

fatal, neurodegenerative condition which is caused

by an abnormal CAG expansion located within exon 1

of the huntingtin gene.1 Because of its monogenic cause,

HD gene carriers can be identified before the appearance

of overt clinical signs, providing a privileged window

through which to observe the preclinical pathogenic

pathways in HD. It also creates an opportunity to inter-

vene before the onset of clinical disease using neuropro-

tective therapies or disease-modifying drugs.

However, establishing the efficacy of any such treat-

ment in a premanifest population presents several

practical challenges. The prevalence of HD is just 12 per

100,0002 and with less than 1 in 5 “at-risk” individuals

undergoing predictive testing,3 the number of known

premanifest HD gene carriers is small. Furthermore, HD

is a slow progressing disease with a large variance in age

of onset, especially for individuals with smaller CAG

repeat lengths.4,5 Currently, proximity to clinical diagno-

sis is estimated using statistical models based upon CAG

repeat length and age.4,6 However, the CAG repeat

length only accounts for between 50% and 69% of the

variance observed in age at diagnosis.6–8 Consequently,

the statistical estimations of proximity to diagnosis are
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unreliable at the level of the individual,5 resulting in the

need for increased sample sizes to adequately power pre-

manifest clinical trials.

Researchers have postulated that neuroimaging

markers of structural, functional, and connectivity

changes in the premanifest brain have a more predictable

relationship with the onset of clinically diagnosable

HD.9–11 Over the past 5 years, the number of different

imaging techniques has rapidly increased. Although each

technique has its own individual merit, it is difficult to

establish which one (or more than one) is the most suit-

able for use as a premanifest biomarker. Furthermore, the

efficacy of the imaging biomarkers is judged by the

strength of its relationship with the statistical estimates of

proximity to diagnosis creating a circular problem.

In this study, we sought to address these issues by

comparing three distinct neuroimaging measures—

resting-state functional connectivity, subcortical gray mat-

ter volume, and cortical thickness—in a population of

premanifest HD gene carriers (preHD) and age-matched

controls before evaluating the utility of a novel bio-

marker, which combined all three. Importantly, while all

participants were classified as preHD at the time of scan-

ning, 42% received a diagnosis of clinical disease within

5 years; for these participants, real-life time to diagnosis

was also used. A multivariate machine learning approach

was applied in combination with robust permutation

modeling to determine the potential of each measure, for

correctly classifying preHD from controls and for identi-

fying which preHD would receive a clinical diagnosis

within 5 years. Our prediction was that a holistic treat-

ment of the data, that took into account all markers

combined, would produce the most accurate clinical

marker.12 Finally, to validate this approach we conducted

an independent validation with independent structural

data (functional data were not available) from the

TRACK-HD13 consortium.

Patients and Methods

Cambridge Cohort
Nineteen preHD individuals (confirmed CAG expansion) and

21 age-matched controls were recruited from the HD clinic at

the John Van Geest Centre for Brain Repair (Cambridge, UK).

Ethical Approval was granted by the Local Research Ethics

Committee’s and informed consent was taken from participants.

The preHD group was median-split into preHD-near and

preHD-far subgroups according to their estimated years to clin-

ical diagnosis score calculated using the Langbehn model4

TABLE 1. Demographics of the Cambridge Cohort and TRACK-HD Partial Independent Validation Cohort at

Baseline

Premanifest Baseline

Classificationd

Premanifest Follow-up

Classificatione

Pre-HD Controls Far Near Converter Nonconverter

Cambridge cohort

Number 19 21 9 10 8 (3a) 11

Age,y 45.5 (11.5) 41.9 (12.2) 41.9 (11.7) 48.7 (11.5) 50.5 (9.3) 41.9 (11.9)

Estimated years to diagnosisc 16.1 (8.4) — 22.8 (7.4) 10.1 (2.7) 12.7 (7.6) 18.6 (8.4)

Disease burden scoreb 241.8 (77.2) — 181.5 (38.1) 296.1 (60.9) 276.0 (91.8) 217.0 (56.6)

TRACK-HD cohort

No. 118 121 60 58 42 (20a) 76

Age, y 40.8 (8.9) 46.3 (10.1) 42. (11.1) 48.7 (11.5) 50.5 (9.4) 42.8 (11.8)

Estimated years to diagnosisc 8.1 (4.9) — 11.5 (3.8) 4.5 (2.8) 6.0 (3.7) 7.9 (5.1)

Disease burden scoreb 274.7 (49.2) — 237.9 (31.4) 312.8 (32.5) 295.1 (46.2) 278.6 (50.1)

aPredicted to convert within follow-up period based upon the Langbehnf equation.
bDisease burden score 5 age 3 (CAG-35.5).
cCalculated using the Langbehn equation.f

dDivided by the whole Pre-HD group median (13.6 for the Cambridge cohort; 10.8 years for the TRACK-HD cohort).
eDivision based upon the presence of a clinical diagnosis of HD at the time of follow-up.
fTaken from Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR; International Huntington’s Disease Collaborative Group. A new

model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 2004;65:267–277.
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(median 5 13.6 years). The cohort was then tracked for 5 years,

during which time 8 preHD developed overt motor symptoms

(HD-converters; see Table 1 for demographics).

Data Acquisition
Resting-state functional magnetic resonance imaging (fMRI;

300 T2*-weighted volumes: repetition time 5 2 seconds, echo

time 5 30ms, 3mm3 voxels) and structural (1mm3

magnetization-prepared rapid gradient echo) scans were con-

ducted using a 3 Tesla Siemens TIM Trio MRI at the MRC

Cognition and Brain Sciences Unit (Cambridge, UK).

Independent Cohort Validation
Classification models were validated with independent data

from the TRACK-HD consortium. One hundred eighteen

preHD and 121 controls were recruited internationally from

four sites (see earlier works13,14 for details; Table 1). The

preHD group were divided into “near” and “far” subgroups

using the same methodology described above (median 5 10.8

years). These independent data provided an opportunity to test

the generalizability of the structural models’ generalizability

(fMRI data were not available).

fMRI Processing
fMRI data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/

spm). Images were slice-timing and motion corrected, coregis-

tered to the structural image, normalized to 2mm3 Montreal

Neurological Institute (MNI) space and spatially smoothed

(8mm). Maps of canonical resting-state networks (RSNs) were

taken from a previous study15 and used to compare network cou-

plings between groups. Time courses extracted16 for each RSN

were used to calculate beta estimates for each RSN pair using two

general linear models with the time course of one RSN as a

dependent variable in one model and as an independent variable

in the second. Individuals motion parameters and white-matter

time courses were modeled as nuisance regressors (N.B.). Motion

did not differ across groups (framewise displacement [t 5 –

0.0016; p 5 0.9863); root mean square error [t 5 –0.0015;

p 5 0.3964]; spikes (t 5 1.331; p 5 0.1911]). Averaging across

the two betas from each RSN pair produced 171 estimates of

connectivity, or “coupling strengths” per individual.

Structural Features
Estimates of cortical thickness (CT) and subcortical volumes

(SCVs) were calculated using FreeSurfer (https://surfer.nmr.

mgh.harvard.edu) and the Destrieux atlas.17

Machine Learning
A linear support vector machine (SVM) was implemented in

MATLAB (R2015b; The MathWorks, Inc., Natick, MA) and

was trained to classify the preHD and control groups. For each

model, the input data were standardized, age and imaging site

regressed out, and normalized using a rank-based inverse trans-

form. Models were trained using a linear kernel, sequential

minimal optimization (SMO) and a weighted cost function to

account for class imbalances. Models were robustly evaluated

using leave-one-out validation and permutation testing (1,000

iterations) of the models F1 scores, which, as the harmonic

mean of the models sensitivity and precision, represents a more

informative metric than classification accuracy when classes are

imbalanced. Similar to classification accuracy, F1-score chance

is determined by the null distribution (�50% in binary cases).

Empirical probability values were calculated for each true model

by its ranked F1 score relative to its permuted null distribution,

for example, F1-scores> 99% of the permuted models equal a

p value< 0.01.

An independent validation was applied across the Cam-

bridge and TRACK-HD cohorts. Models were trained with

SCVs to differentiate specific subgroups within the TRACK-

HD data set and then assessed by its F1 score when tested on

the same subgroups within the Cambridge cohort against a per-

muted distribution (1,000 iterations).

In summary, RSN connectivity, CT, and SCVs were com-

pared across preHD and controls and evaluated as correlates of

clinical diagnosis. These measures were then evaluated as pre-

dictors of clinical diagnosis with binary SVMs. Finally, SVMs

were trained with SCVs and tested on an independent sample

(see Fig 1 for a schematic of the analysis).

Results

Resting-State Network Coupling

CROSS-GROUP ANALYSIS. RSNs coupling were entered

into a repeated-measures analysis of variance (ANOVA) with

Connection as the within-participant factor (171 levels) and

FIGURE 1: High-level schematic of the analysis approach. In
the Cambridge cohort, both resting-state fMRI and struc-
tural images were available, only structural images were
available for the TRACK-HD cohort. Colors represent the
independent samples used for different aspects of the anal-
ysis (blue 5 Cambridge cohort [19 preHD, 21 controls];
green 5 TRACK-HD cohort [118 preHD, 121 controls]).
fMRI 5 functional magnetic resonance imaging; SVM 5 sup-
port vector machine.
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Group (preHD vs controls) as the between participant

factor. There was a main effect of Connection (F(170,6460)

5 42.264; p< 0.001; gG2 5 0.490) and a significant Group

* Connection interaction (F(170,6460) 5 1.986; p< 0.001;

gG2 5 0.043), indicating that some RSN coupling strengths

differed across groups. The was no main effect of Group.

To characterize the basis of these effects, we com-

pared RSN couplings across groups using two-sample t

tests with an uncorrected two-tailed threshold of p< 0.02,

which identified 10 RSN connections with lower coupling

strengths in preHD. Notably, a network that included the

anterior insula/inferior frontal operculum (AIFO) and

regions of the striatum featured in five of these reduced

couplings (Fig 2A). Five couplings showed heightened net-

work coupling at the same threshold. This approach was

advantageous because it identified couplings that be aver-

aged across to form two composite scores (hypoconnectiv-

ity and hyperconnectivity).

FIGURE 2: (A) Schema ball depicting cross-group differences in resting state network coupling (connections thresholded at
p < 0.02 uncorrected). Blue curves represent reduced network coupling and the red curves represent increased network cou-
pling for the preHD group relative to controls. (B) Table showing correlations for the hypoconnected network measures and
estimated years to diagnosis. (C) Scatterplot of the correlation between the mean values for composite hypoconnected net-
work measures and estimated years to diagnosis.
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ANALYSIS OF DISEASE COURSE. Hypoconnectivity

and hyperconnectivity were correlated against estimated

years to clinical diagnosis (Fig 2c; N.B; this measure was

not normally distributed [ks 5 1; p< 0.001]; therefore,

Spearman correlations were calculated here, and through-

out). The hypoconnectivity measure showed a strong

positive correlation with estimated years to clinical diag-

nosis4 (r 5 0.581; p 5 0.009, 95% confidence interval

[CI; 0.391 0.723]) and a strong negative correlation with

the CAG-Age Product Scaled (CAPs) 18 score (r 5 –

0.526; p 5 0.01; 95% CI [–0.682 –0.322]). A Steiger z-

test demonstrated that estimated years to clinical diagno-

sis explained a significantly larger amount of variance in

hypoconnectivity scores than did the CAPs measure

(z 5 2.568; p 5 0.01) and was therefore not used going

forward. An exploratory analysis revealed that the major-

ity of the significant hypoconnectivity connections,

including all of those with the AIFO network, showed

significant positive correlations with estimated years to

clinical diagnosis (Fig 2b).

Hypoconnectivity did not correlate with CAG

repeat number (r 5 –0.241; p 5 0.8401, 95% CI [–0.459

0.004]) or Age (r 5 –0.385; p 5 0.1033; 95% CI [–

0.155 –0.575]) and the relationship to estimated years to

clinical diagnosis remained when age was factored out in

a partial correlation (r 5 0.433; p 5 0.036, one-tailed,

95% CI [0.210 0.612]). Finally, hyperconnectivity scores

did not correlate with estimated years to clinical diagno-

sis (r 5 –0.2877; p 5 0.2322, 95% CI [–0.497, –0.046]).

The ANOVA was repeated using the preHD sub-

groups to model the proximity to disease onset. There

was a main effect of Connection (F(170,6290) 5 37.884;

p< 0.001; gG2 5 0.472) and a significant Group * Con-

nection interaction (F(340,6290) 5 1.669; p< 0.001;

gG2 5 0.073). There was no main effect of Group.

Because of connectivity effects going in opposing direc-

tions (as observed in the higher-level analysis), a Tukey

post-hoc analysis revealed no group effects. However, a

comparison of the hypoconnectivity composite between

groups using a one-way ANOVA revealed a main effect

of Group (F(2,37) 5 15.476; p< 0.001). The Tukey post-

hoc analysis showed that the preHD-near group had

lower hypoconnectivity scores than the preHD-far

(p 5 0.016; 95% CI [–0.336, –0.030]) and control

(p< 0.001; 95% CI [–0.419, –0.163]) groups. Critically,

the preHD-far group did not differ from the control

group (p 5 0.131; 95% CI [–0.025, 0.240]). Taken

together, the connectivity data demonstrate that the pre-

manifest HD show reduced RSN coupling, primarily in

networks paired with the AIFO, and these abnormalities

increase as they reached clinical diagnosis.

Subcortical Volumetrics

CROSS-GROUP ANALYSIS. SCVs were entered into a

repeated-measures ANOVA with Structure (six levels) as the

within-participant factor, Group (preHD, control) as the

between-participant factor, and Age modeled as a covariate.

There was a main effect of Structure (F(5,185) 5 105.645;

p< 0.001; gG2 5 0.596) and significant Structure * Group

(F(5,185) 5 4.800; p< 0.001; gG2 5 0.063) and Structure *

Age (F(5,185) 5 2.740; p 5 0.021; gG2 5 0.037) interactions

(Fig 3). There was no main effect of Group.

To characterize the basis of the interaction, each

SCV was modeled in a one-way ANOVA with Group

(preHD-near, preHD-far, and controls) as the between-

participant factor. There were significant Group effects

on caudate (F(2,37) 5 5.520; p 5 0.008; g2 5 0.229),

putamen (F(2,37) 5 4.792; p 5 0.014; g2 5 0.205), and

pallidum (F(2,37) 5 4.502; p 5 0.018; g2 5 0.195)

FIGURE 3: (A) Subcortical gray matter volume of the preHD-near (light gray), preHD-far (gray) and the matched control (light
gray) groups. Each bar is accompanied by an image with the associated structure highlighted in black. Error bars report the
standard error of the mean (**p < 0.01; *p < 0.05). (B) Scatterplot showing the correlation between Putamen (black dots), Cau-
date (gray dots), and Pallidum (light-gray dots) volume (collapsed across hemisphere) with Estimated years to disease onset.
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volumes. Post-hoc Tukey analyses demonstrated that the

preHD-near group had significantly lower caudate

(p 5 0.006, 95% CI [–1,223.738, –186.021]), putamen

(p 5 0.011, 95% CI [–1,836.311, –207.492]), and

pallidum (p 5 0.018, 95% CI [–477.248, –38.329])

volumes than the controls whereas the preHD-far

and preHD-near groups (Caudate: p 5 0.117; 95% CI

[–1,139.057 101.918]; Putamen: p 5 0.368; 95%

CI [–1,519.562, 428.295]; Pallidum: p 5 0.061; 95% CI

[–515.248, 9.641]) and the preHD-far and control

groups (Caudate: p 5 0.678; 95% CI [–724.341,

351.720]; Putamen: p 5 0.363, 95% CI [–1,320.771,

368.235]; Pallidum: p 5 0.998; 95% CI [–232.554,

222.582]) did not differ.

ANALYSIS OF DISEASE COURSE. Estimated years to

disease onset significantly correlated with caudate

(r 5 0.496; p 5 0.031; 95% CI [0.285, 0.660]) and pal-

lidum (r 5 0.596; p 5 0.007; 95% CI [0.411, 0.733])

volumes, whereas putamen volume did not correlate

(r 5 0.372; p 5 0.117; 95% CI [0.139, 0.565]; Fig 3b).

The correlation between caudate volume and estimated

years to clinical diagnosis remained when age was fac-

tored out using a partial correlation (r 5 0.471;

p 5 0.049; 95% CI [0.255, 0.641]). Therefore, the

preHD group had reduced volumes in specific subcorti-

cal structures relative to controls, and these abnormalities

became more pronounced as they approached clinical

diagnosis.

Cortical Thickness

CROSS-GROUP ANALYSIS. CT measures were entered

into a repeated-measures ANOVA with Parcel (74 levels)

and Hemisphere (Left vs Right) as the within-participant

factors, Group (preHD, control) as the between-participant

factor and Age modeled as a covariate (N.B. We observed

no evidence of quadratic effects). There were main effects of

Group (F(1,37) 5 5.410; p 5 0.026; gG2 5 0.024) and Par-

cel (F(73,2701) 5 18.970; p< 0.001; gG2 5 0.181), and sig-

nificant Group * Parcel (F(73,2701) 5 1.473; p 5 0.006;

gG2 5 0.016) and Parcel * Age (F(73,2701) 5 2.022;

p< 0.001; gG2 5 0.023) interactions.

A comparison of Mean CT across Groups using a

one-way ANOVA showed a main effect of Group

(F(2,37) 5 6.132; p 5 0.005; g250.249). A Tukey post-

hoc analysis demonstrated that mean CT was significantly

lower in the preHD-near compared to the control group

(p 5 0.004; 95% CI [–0.211, –0.036]) with a subthresh-

old difference compared to the preHD-far group

(p 5 0.062; 95% CI [–0.204, 0.004]). The preHD-far

and controls did not differ (p 5 0.797; 95% CI [–0.066

0.114]; Fig 4A).

ANALYSIS OF DISEASE COURSE. Estimated years to

disease onset showed a positive correlation with mean

CT (r 5 0.628; p 5 0.004; 95% CI [0.452, 0.756]; Fig

4B), which remained when age was factored out using a

partial correlation (r 5 0.579; p 5 0.012; 95% CI [0.389,

0.721]). Therefore, the preHD group had reduced CT

relative to controls and these abnormalities became more

pronounced as they approached clinical diagnosis.

Cross-Group Classification Using a SVM
Next, determined whether the entire RSN coupling

strengths, CT and SCVs feature sets could be used to clas-

sify the preHD group in a holistic manner using SVMs

and permutation testing (see Materials and Methods).

We first classified the preHD and controls based on

either their RSN coupling strengths, SCVs, or the CTs

independently, or combined as a polymarker (Table 2,

row 1). The SVMs performed significantly higher than

chance for each feature set (Rest: F1 5 67%; p< 0.02;

FIGURE 4: (A) Comparisons of cortical thickness (collapsed across hemisphere) between the Controls (dark gray), preHD-far
(medium gray), and preHD-near (light gray) groups. Error bars represent the standard error of the mean (***p 5 0.001). (B) A
scatterplot showing the correlation between mean cortical thickness & estimated years to diagnosis.
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CT: F1 5 65%; p< 0.02; SCVs: F1 5 72%; p< 0.02;

polymarker: F1 5 74%; p< 0.01).

We next observed a clear distinction in classifying

the preHD-near and far groups from controls. The

preHD-near group was successfully classified from con-

trols (Table 2, row 3) with the Rest (F1 5 87%;

p< 0.001), SCV (F1 5 73%; p< 0.05), and the poly-

marker (F1 5 84%; p< 0.001) feature sets. Conversely,

the preHD-far group was not classified from the controls

with above chance accuracy (Table 2, row 2).

Finally, we classified the 8 individuals who had

received clinical diagnoses in the time between data

acquisition and the end of the study (Table 2, rows 4

and 5). Converted-HD were classified from controls well

above chance using the SCV (F1 5 88%; p< 0.01) and

the polymarker (F1 5 81%; p< 0.001) feature sets.

Predicting Clinical Diagnosis

RELATIONSHIP BETWEEN HD CLINICAL DIAGNOSIS

AND ESTIMATED YEARS TO ONSET. Over the 5

years of this study, 5 of the Converted-HD received clin-

ical diagnosis despite having estimated years to onset

scores that would not have predicted this (in 1 case for

�30 years); these were labeled unexpected converters.

There was no difference in the ranked estimated years to

clinical diagnosis scores for the unexpected converted and

the nonconverted groups (Mann–Whitney U 5 96,

n1 5 11, n2 5 5, p 5 0.8269, HL 5 1.310, 95% CI [–

2.300, 8.600]; Fig 5a). Similarly, the difference in CAPs

score was nonsignificant (U 5 84, n1 5 11, n2 5 5,

p 5 0.3196, HL 5 –0.071, 95% CI [–0.213, –0.017];

Fig 5b).

PREDICTION OF CLINICAL DIAGNOSIS FROM IMAG-

ING DATA. A pertinent question was whether the neuro-

imaging measures could provide an alternative prediction of

disease onset. The ranked hypoconnectivity score (U 5 90,

n1 5 11, n2 5 5, p 5 0.7427, HL 5 –0.113, 95% CI [–

0.225, 0.027]) or mean CT (U 5 96, n1 5 11, n2 5 5,

p 5 0.8269, HL 5 0.019, 95% CI [–0.033, 0.100]) did not

differ between the unexpected converted and the noncon-

verted groups. However, putamen (U 5 115, n1 5 11,

n2 5 5, p 5 0.0133, HL 5 1.0798e103, 95% CI [671.700,

1.3962e103]) and caudate volume (U 5 113, n1 5 11,

n2 5 5, p 5 0.027, HL 5 723.900, 95% CI [368.500,

988.300]) did significantly differ (Fig 5c).

Rerunning the SVM pipeline using the polymarker

but directly comparing the unexpected converted and the

nonconverted groups classified them with above chance

accuracy (correct 5 74%; accuracy, p< 0.03). Further-

more, distance to the classification hyperplane (a measure

of classification strength) for the SVM model comparing

all preHD versus controls using the polymarker feature

set significantly differed between the unexpected con-

verted and the nonconverted preHD individuals (Fig 5d;

U 5 83, n1 5 11, n2 5 5, p 5 0.019, HL 5 –59.117,

95% CI [–161.632, –34.691]). Contrasting all converted

individuals versus nonconverted for this measure pro-

vided a robust cross-group difference (U 5 86, n1 5 11,

n2 5 8, p 5 0.002, HL 5 –81.818, 95% CI [–170.334, –

50.101]), despite the model having been blind to this

information when trained. Critically, the 8 converted

TABLE 2. Classification Accuracy (%) and Comparison to Randomly Permuted Null Distribution

LOO
External

Rest CT SCV Polymarker SCV

Group

preHD vs controls 67* 65* 72* 74** 72**

preHD-far vs controls 49 63 48 56 48

preHD-near vs controls 89*** 61 73* 84*** 82**

Converted HD vs controls 60 65 88** 81*** 84**

Table reports classification accuracy (F1 scores %) from analyses using a linear support vector machine with leave-one-out (LOO) and external test-

ing. Models were assessed by their F1 scores against a randomly permuted null distribution made up of 1,000 iterations where the group labels

were shuffled. The External column represents models trained on an external data set (TRACK-HD) and tested on the Cambridge cohort.

***>5All permutations; **>599% of permutations; *>595% of permutations. Rest 5 Between Resting Network coupling. preHD 5 all premani-

fest HD individuals (N 5 19). Far HD 5 individuals who were estimated to be far from receiving a clinical diagnosis (N 5 10). Near

HD 5 individuals who were estimated to be near to receiving a clinical diagnosis (N 5 9). Converted HD 5 individuals who became manifest in

the years between data collection and analysis (N 5 8).

CT 5 cortical thickness; SCV 5 subcortical volumes.
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HD individuals were all within the top 10 when preHD par-

ticipants were ranked by classification accuracy, whereas this

was only the case for 3 of them when ranked by estimated

years to onset. Therefore, a simple median split of the HD

group based on the hyperplane distance differentiates indi-

viduals who are within 5 years of developing overt disease

from those who are not with�84% to 89% accuracy.

CROSS-COHORT VALIDATION. In a final validation

step, the SVM was trained on SCVs from an external cohort

(TRACK-HD: 118 preHD, 121 controls). The model was

then tested using independent data from the Cambridge

cohort (see Materials and Methods). The preHD-far and

control model performed at chance level (Fig 6A,B). How-

ever, the preHD-all (F1 5 72%; p< 0.01) and preHD-near

(F1 5 82%; p< 0.01) versus control models performed with

an above chance accuracy (Fig 6A,B). The HD-converter

model performed above chance when classifying HD-

converters within the Cambridge cohort (F1 5 84%;

p< 0.01).

Following this, the model trained to differentiate

preHD and controls using the TRACK-HD data set was

applied to the preHD subjects from the Cambridge data

set. This was applied to examine how the HD-converters

and those preHD yet to convert clustered relative to the

SVM hyperplane (Fig 6c). Despite the SVM being na€ıve to

FIGURE 5: Relationship between actual time of diagnosis and estimated years to diagnosis (A), CAG-Age product scaled (B),
caudate volume (C), and SVM classification strength (D). Yellow 5 expected to phenoconvert within 2 years or less of the analy-
sis date. Red 5 early diagnosis. Blue 5 yet to phenoconvert. SVM 5 support vector machine. Yellow 5 expected to phenoconvert
within 5 years or less of analysis date.
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information regarding symptom onset, 87.5% of converters

were assigned to the same class despite 57% of these receiv-

ing diagnoses before their expected conversion.

Discussion

To our knowledge, this is the first study to combine brain

function and structure to create a polymarker that robustly

identifies whether a patient will receive a real-life clinical

diagnosis within 5 years. A consistent pattern of results

emerged across imaging domains, whereby individuals pre-

dicted to be “near” to diagnosis presented robust differences

relative to those predicted to be “far” from diagnosis and con-

trols, whose performance was similar. The results also dem-

onstrate that combining imaging metrics as a polymarker can

predict whether preHD individuals are within 5 years of clin-

ical diagnosis with greater sensitivity than the Langbehn

model.4 Consequently, a trained classification machine of

this type could be used to assign risk quotients identifying

those near to diagnosis for use in clinical trial recruitment.

A strength of this work is that the SVM was

trained using imaging data from participants with a

definitive date of diagnosis unlike previous neuroimaging

studies, where the relationship was established with a sta-

tistical estimate of proximity to diagnosis that is known

to be inaccurate on an individual basis. The benefit of

this is best illustrated by the relationship between classifi-

cation strength and unexpected diagnosis. The Langbehn

model only accurately identified 3 of the 8 individuals

who did subsequently receive a clinical diagnosis, reveal-

ing a high rate of false negatives. Therefore, given the

increased sensitivity, this model has the potential to be

clinically useful with a greater positive predictive value

than current biomarkers pending a full replication in a

larger cohort.

FIGURE 6: Cambridge data classified with models trained on independent data from the TRACK-HD consortium. (A) Permuted null
distribution F1 scores (pink) relative to the true model (yellow bar, N.B. Bar height and width are arbitrary) for the controls versus
preHD-far (Ai), preHD-all subjects (Aii), and preHD-near (Aiii) models. (B) Confusion matrices for each model. A model trained to clas-
sify preHD versus controls in the TRACK-HD data was used to measure distance to SVM hyperplane when the model was tested on
the Cambridge preHD. (C) Yellow 5 expected to phenoconvert within 2 years or less of the analysis date. Red5 early diagnosis. Blue-
5 yet to be diagnosed. SVM 5 support vector machine. Yellow 5 expected to phenoconvert within 5 years or less of analysis date.
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Although never tested, it is assumed that preHD par-

ticipants transition toward impairment from a normal

baseline. Indeed, we have demonstrated that they have

similar neural profiles to controls and consequently SVM

classification was unsuccessful. This suggests that macro-

scopic structural and functional pathology in the preHD

brain develops from a relatively normal baseline. There-

fore, hypothetically treatment efficacy could be evaluated

against its ability to impede the rate at which an individu-

al’s neuroimaging profile progresses toward the near-HD

classification profile, or by determining whether there is a

degree of normalisation towards the profile of controls.

Although the polymarker was the most successful

classifier of preHD individuals who converted from those

who did not, all the imaging measures independently

yielded a classification accuracy that was significantly bet-

ter than chance. The most sensitive of these independent

measures was subcortical volume, which classified partici-

pants with 88% accuracy. Indeed, the univariate analyses

of the subcortical gray matter identified robust cross-

group differences between the preHD and controls with

the volume of the caudate showing a strong relationship

to the estimated time to clinical diagnosis. Crucially,

when caudate volume was used to retrospectively predict

those patients who were within 5 years of clinical diagno-

sis (Fig 5), this measure was seen to be a robust and

individualized identifier of real-life clinical diagnosis.

These findings accord and extend existing work,9,19–21

providing additional support for the use of caudate vol-

ume as a reliable estimate of disease proximity and mak-

ing it a potentially useful biomarker.

Importantly, the volumetric data were also the only

individual measure capable of distinguishing those partici-

pants who had received an “unexpected diagnosis” from

those who remained disease free. Given the resilience of

these findings, which have been demonstrated consistently

across multiple studies in preHD,22–29 we would suggest

that analyses of subcortical volume becomes a minimum

requirement for any future preclinical disease modifying

trials in HD. Notably, structural volumetric analyses are

likely to be more robust across scanners than resting-state

functional neuroimaging measures; therefore, they are also

more likely to form a tractable basis for a standardized pol-

ymarker that can be used to integrate findings across stud-

ies and sites. This is further supported in the current study

through the independent validation of the structural imag-

ing component of the Cambridge analysis with the multi-

site TRACK-HD baseline data set.13

Nonetheless, the functional connectivity measures

contribute to the accuracy of the polymarker and provide

insight into the likely basis of cognitive abnormalities in

the premanifest and prodromal phases. Specifically, we

observed progressive disruptions to frontostriatal system-

to-system interactions in preHD. Altered resting-state

functional connectivity has previously been shown in

preHD with reduced coupling between the left middle

frontal and precentral gyrus and between the right post-

central gyrus with the medial visual network.30 Our find-

ings identified a more extensive global pattern of

abnormality with greater hypoconnectivity between 10

RSNs in preHD-near than in preHD-far and control

groups. This abnormality showed a strong relationship

with estimated years to clinical diagnosis.

Interestingly, interrogation of the hypoconnectivity

composite revealed extensive abnormal interactions

between the AIFO and other large-scale networks in

preHD. Given the progressive nature of the abnormali-

ties observed, it is likely that degeneration within the

caudate leads to abnormal modulation of AIFO function,

a key node for cognitive control,31 and impacts on more

diffuse network interactions required for executive behav-

iors.32–34 This probably relates to the executive dysfunc-

tion observed in preHD. Consequently, resting-state

fMRI may also be an appropriate biomarker for use in

future therapeutic trials of potential cognitive enhancing

treatments. Further work is needed to confirm the way

in which resting-state network abnormalities develop lon-

gitudinally, and how this impacts on cognitive function,

especially in the light of a recent study that detected no

change over a 3-year period.35

Conversely, the observed hyperconnectivity between

five RSNs did not robustly relate to disease course, and

therefore although this they may relate to functional

reorganisation in preHD, we do not consider them to be

suitable biomarkers.

Finally, our analysis of the cortex detected a preHD

versus control effect of reduced cortical thickness that

was more pronounced in preHD individuals approaching

diagnosis. Consistent with our other analyses, the

preHD-far group did not differ from controls whereas

the preHD-near group showed significantly reduced cor-

tical thickness to both groups.

Multivariate polymarkers of the type developed

here could potentially be used clinically to help preHD

individuals plan their lives more securely, including

employment where gene status can be a major problem

(eg, military, medical profession). Moreover, disease-

modifying therapies are currently being developed with

the intention of delaying the onset of clinical disease.

Using this new neuroimaging polymarker should improve

the selection criteria for such a study by facilitating the

recruitment of participants who really have a high proba-

bility of being within 5 years of diagnosis. This is partic-

ularly relevant in an orphan disease like HD.36
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The main limitation of this study is that our sam-

ple size was restricted by the practical limitations of

recruiting from a low prevalence neurological population.

However, our SVM was robustly validated using a leave-

one-out approach relative to a permutation distribution.

Additionally, we repeated the structural analysis in a

larger, independently acquired data set of premanifest

HD gene carriers, 36% of whom also developed clinical

symptoms of the disease within 5 years, which yielded

consistent results. Moreover, a major strength of our

study was the longitudinal follow-up, which allowed us

to determine classification accuracy in those individuals

not expected to receive a clinical diagnosis within 5 years.

This was an opportunity to evaluate our model against

real-life diagnostic data and to compare its accuracy to

the Langbehn model. In the cross-validation analysis, we

opted to fully replicate the methodology from the origi-

nal data set including deriving a new median split within

the validation cohort. This approach could be criticized

because time-to-onset predictions should not be cohort

dependent. However, we felt that it was important to

respect the a priori analysis plan and, by so doing, to

uphold the integrity of the analysis. In future studies, an

alternative approach could be to use estimated time to

disease onset as a continuous variable in a regression-

rather than classification-based analysis. Finally, clinical

signs of HD develop across a wide range of ages; conse-

quently, the age range for participants in this study was

large (26–68 years old). Despite this, our groups and

subgroups were age matched, and critical cross-group

and correlational effects were significant when age was

carefully factored out.

At present, we know of only one other study that

includes structural and resting MRI measures from

preHD individuals (TRACK-ON) and that could poten-

tially be used to replicate our findings. Unfortunately,

that data are currently unavailable for a replication analy-

sis. Nonetheless, future research should replicate these

results within an independent sample.

In summary, this is the first study to develop a

multimodality neuroimaging polymarker of HD capable

of sensitively identifying individuals who are within 5

years of their real-life clinical diagnosis. We demonstrate

the potential of multivariate statistics to outperform pre-

dictions made by the Langbehn model. Being able to

identify those people who are truly “close” to diagnosis

has both clinical and experimental relevance, providing

both support for gene carriers who wish to work in high-

risk, high-power professions and facilitating the most

efficient and effective recruitment to future disease modi-

fying therapeutic trials.
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