168 research outputs found

    On the quasi-isometric rigidity of graphs of surface groups

    Full text link
    Let Γ\Gamma be a word hyperbolic group with a cyclic JSJ decomposition that has only rigid vertex groups, which are all fundamental groups of closed surface groups. We show that any group HH quasi-isometric to Γ\Gamma is abstractly commensurable with Γ\Gamma.Comment: 54 pages, 10 figures, comments welcom

    Thermal Timescale Mass Transfer and the Evolution of White Dwarf Binaries

    Full text link
    The evolution of binaries consisting of evolved main sequence stars (1 < M_d/Msun < 3.5) with white dwarf companions (0.7 < M_wd/Msun < 1.2) is investigated through the thermal mass transfer phase. Taking into account the stabilizing effect of a strong, optically thick wind from the accreting white dwarf surface, we have explored the formation of several evolutionary groups of systems for progenitors with initial orbital periods of 1 and 2 days. The numerical results show that CO white dwarfs can accrete sufficient mass to evolve to a Type Ia supernova and ONeMg white dwarfs can be built up to undergo accretion induced collapse for donors more massive than about 2 Msun. For donors less massive than ~2 Msun the system can evolve to form a He and CO or ONeMg white dwarf pair. In addition, sufficient helium can be accumulated (~0.1 Msun) in systems characterized by 1.6 < M_d/Msun < 1.9 and 0.8 < M_wd/Msun < 1 such that sub Chandrasekhar mass models for Type Ia supernovae, involving off center helium ignition, are possible for progenitor systems evolving via the Case A mass transfer phase. For systems characterized by mass ratios > 3 the system likely merges as a result of the occurrence of a delayed dynamical mass transfer instability. A semi-analytical model is developed to delineate these phases which can be easily incorporated in population synthesis studies of these systems.Comment: 9 pages, 6 figures, Latex, emulateapj style, ApJ accepte

    Stability of radiation-pressure dominated disks. I. The dispersion relation for a delayed heating alpha-viscosity prescription

    Get PDF
    We derive and investigate the dispersion relation for accretion disks with retarded or advanced heating. We follow the alpha-prescription but allow for a time offset (\tau) between heating and pressure perturbations, as well as for a diminished response of heating to pressure variations. We study in detail solutions of the dispersion relation for disks with radiation-pressure fraction 1 - \beta . For \tau <0 (delayed heating) the number and sign of real solutions for the growth rate depend on the values of the time lag and the ratio of heating response to pressure perturbations, \xi . If the delay is larger than a critical value (e.g., if \Omega \tau <-125 for \alpha =0.1, \beta =0 and \xi =1) two real solutions exist, which are both negative. These results imply that retarded heating may stabilize radiation-pressure dominated accretion disks.Comment: 11 pages, 10 figures, to be submitted to A&

    The most massive progenitors of neutron stars: CXO J164710.2-455216

    Full text link
    The evolution leading to the formation of a neutron star in the very young Westerlund 1 star cluster is investigated. The turnoff mass has been estimated to be 35 Msun, indicating a cluster age ~ 3-5 Myr. The brightest X-ray source in the cluster, CXO J164710.2-455216, is a slowly spinning (10 s) single neutron star and potentially a magnetar. Since this source was argued to be a member of the cluster, the neutron star progenitor must have been very massive (M_zams > 40 Msun) as noted by Muno et al. (2006). Since such massive stars are generally believed to form black holes (rather than neutron stars), the existence of this object poses a challenge for understanding massive star evolution. We point out while single star progenitors below M_zams < 20 Msun form neutron stars, binary evolution completely changes the progenitor mass range. In particular, we demonstrate that mass loss in Roche lobe overflow enables stars as massive as 50-80 Msun, under favorable conditions, to form neutron stars. If the very high observed binary fraction of massive stars in Westerlund 1 (> 70 percent) is considered, it is natural that CXO J164710.2-455216 was formed in a binary which was disrupted in a supernova explosion such that it is now found as a single neutron star. Hence, the existence of a neutron star in a given stellar population does not necessarily place stringent constraints on progenitor mass when binary interactions are considered. It is concluded that the existence of a neutron star in Westerlund 1 cluster is fully consistent with the generally accepted framework of stellar evolution.Comment: 5 pages of text and 4 figures (submitted to Astrophysical Journal

    Why the braking indices of young pulsars are less than 3?

    Full text link
    In this letter we discuss two possible reasons which cause the observed braking indices n of young radio pulsars to be smaller than 3: (a) the evolving spin-down model of the magnetic field component BB_{\perp} increases with time; (b) the extrinsic braking torque model in which the tidal torques exerted on the pulsar by the fallback disk, and carries away the spin angular momentum from the pulsar. Based on some simple assumptions, we derive the expression of the braking indices, and calculate the spin-down evolutionary tracks of pulsars for different input parameters.Comment: 4 pages, 3 figures, accepted for publication in A&A Letter

    The Evolutionary Status of SS433

    Get PDF
    We consider possible evolutionary models for SS 433. We assume that common-envelope evolution is avoided if radiation pressure is able to expel most of a super-Eddington accretion flow from a region smaller than the accretor's Roche lobe. This condition is satisfied, at least initially, for largely radiative donors with masses in the range 4-12 solar masses. For donors more massive than about 5 solar masses, moderate mass ratios q = M_2/M_1 > 1 are indicated, thus tending to favor black-hole accretors. For lower mass donors, evolutionary considerations do not distinguish between a neutron star or black hole accretor. In all cases the mass transfer (and mass loss) rates are much larger than the likely mass-loss rate in the precessing jets. Almost all of the transferred mass is expelled at radii considerably larger than the jet acceleration region, producing the "stationary" H-alpha line, the infrared luminosity, and accounting for the low X-ray luminosity.Comment: 13 pages, Astrophysical Journal Letters, accepte

    On the Origin of X-ray Emission From Millisecond Pulsars in 47 Tuc

    Get PDF
    The observed spectra and X-ray luminosities of millisecond pulsars in 47 Tuc can be interpreted in the context of theoretical models based on strong, small scale multipole fields on the neutron star surface. For multipole fields that are relatively strong as compared to the large scale dipole field, the emitted X-rays are thermal and likely result from polar cap heating associated with the return current from the polar gap. On the other hand, for weak multipole fields, the emission is nonthermal and results from synchrotron radiation of e±e^{\pm} pairs created by curvature radiation. The X-ray luminosity, LxL_x, is related to the spin down power, LsdL_{sd}, expressed in the form LxLsdβL_x \propto L^{\beta}_{sd} with β0.5\beta \sim 0.5 and 1\sim 1 for strong and weak multipole fields respectively. If the polar cap size is of the order of the length scale of the multipole field, ss and β0.5\beta \sim 0.5, the polar cap temperature is 3×106K(Lsd1034ergs1)1/8(s3×104cm)1/2\sim 3 \times 10^6 K (\frac{L_{sd}}{10^{34}erg s^{-1}})^{1/8} (\frac{s}{3\times 10^4 cm})^{-1/2}. A comparison of the X-ray properties of millisecond pulsars in globular clusters and in the Galactic field suggests that the emergence of relatively strong small scale multipole fields from the neutron star interior may be correlated with the age and evolutionary history of the underlying neutron star.Comment: 25 pages, 2 figures, accepted for publication in Ap
    corecore