20 research outputs found

    Developmental and reproductive patterns of Triatoma brasiliensis infected with Trypanosoma cruzi under laboratory conditions

    Full text link
    The aim of this work was to study the interaction between Trypanosoma cruzi-1 and Triatoma brasiliensis. A group of 1st instar nymphs was initially fed on T. cruzi-infected mice and a control group was fed on uninfected mice. From the second feeding onwards, both groups were otherwise fed on non-infected mice. The resulting adults were grouped in pairs: infected male/uninfected female, uninfected male/infected female, infected male and female and uninfected male/uninfected female. The infection affected only the 1st instar nymphs, which took significantly more time to reach the 2nd instar than uninfected nymphs. The differences in the molting time between the infected and uninfected nymphs from the 2nd to the 5th instars were not statistically significant. Both groups presented similar rates of nymphal mortality and reproductive performance was not significantly affected by infection in any of the treatments

    Microsatellite analysis of pacu broodstocks used in the stocking program of Paranapanema River, Brazil

    Get PDF
    Monitoring the genetic diversity has fundamental importance for fish stocking programs. This experiment aims to evaluate the genetic diversity in two hatchery stations (A and B) with pacu Piaractus mesopotamicus (Holmberg, 1887) in Andirá, state of Paraná, Brazil used in stocking programs of Paranapanema River. Six microsatellite loci were amplified using DNA extracted from 60 fin-clipping samples. The broodstock B had the average number of alleles and the mean heterozygosity (alleles: 3.7 and H O: 0.628) higher than the broodstock A (alleles: 3.5 and H O: 0.600). Alleles with low frequency levels were observed in the both broodstocks. The positive coefficients of endogamy in the locus Pme2 (broodstock A: F IS = 0.30 and broodstock B: F IS = 0.20), Pme5 (broodstock B: F IS = 0.15), Pme14 (broodstock A: F IS = 0.07) and Pme28 (broodstock A: F IS = 0.24 and broodstock B: F IS = 0.20) indicated deficiency of heterozygotes. Presence of null allele in the locus Pme2 was detected. The negative estimates in loci Pme4 (broodstock A: F IS = - 0.43 and broodstock B: F IS = - 0.37), Pme5 (broodstock A: F IS= - 0.11), Pme14 (broodstock B: F IS= - 0.15) and Pme32 (broodstock A: F IS = - 0.93 and broodstock B: F IS = - 0.60) were indicating the excess of heterozygotes. Evidence of linkage disequilibrium and lower allelic richness was found only in the broodstock A. Nei's gene diversity was high in both broodstocks. The genetic distance (0.085) and identity (0.918) showed similarity between broodstocks, which reflects a possible common origin. 6.05% of the total genetic variance was due to differences among broodstocks. Recent bottleneck effect in two broodstocks was observed. The results indicated a higher genetic diversity in the two broodstocks and they presented low genetic difference. This was caused by the reproductive management in both hatchery stations, reduction of population size and genetic exchange between the hatchery stations.O monitoramento da diversidade genética é fundamental em um programa de repovoamento. Avaliouse a diversidade genética de pacu Piaractus mesopotamicus (Holmberg, 1887) em duas estações de piscicultura em Andirá -Paraná, Brasil, utilizadas no programa de repovoamento do Rio Paranapanema. Foram amplificados seis loci microssatélite para avaliar 60 amostras de nadadeira. O estoque de reprodutores B apresentou maior número de alelos e heterozigose (alelos: 22 e H O: 0,628) que o estoque de reprodutores A (alelos: 21 e H O: 0,600). Alelos com baixos níveis de frequência foram observados nos dois estoques. Os coeficientes positivos de endogamia no locus Pme2 (estoque A: F IS = 0,30 e estoque B: F IS = 0,20), Pme5 (estoque B: F IS = 0,15), Pme14 (estoque A: F IS = 0,07) e Pme28 (estoque A: F IS = 0,24 e estoque B: F IS = 0,20), indicaram deficiência de heterozigotos. Foi detectada a presença de um alelo nulo no lócus Pme2. As estimativas negativas nos loci Pme4 (estoque A: F IS = -0,43 e estoque B: F IS= -0,37), Pme5 (estoque A: F IS = - 0,11), Pme14 (estoque B: F IS = - 0,15) e Pme32 (estoque A: F IS = - 0,93 e estoque B: F IS = - 0,60) foram indicativas de excesso de heterozigotos. Foi evidenciado desequilíbrio de ligação e riqueza alélica baixa só no estoque A. A diversidade genética de Nei foi alta nos dois estoques. A distância (0,085) e identidade (0,918) genética mostraram similaridade entre os estoques, o qual reflete uma possível origem comum. 6,05% da variância genética total foi devida a diferenças entre os estoques. Foi observado um recente efeito gargalo nos dois estoques. Os resultados indicaram uma alta diversidade genética nos estoques de reprodutores e baixa diferenciação genética entre eles, o que foi causado pelo manejo reprodutivo das pisciculturas, redução do tamanho populacional e intercâmbio genético entre as pisciculturas

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Developmental and reproductive patterns of Triatoma brasiliensis infected with Trypanosoma cruzi under laboratory conditions

    No full text
    The aim of this work was to study the interaction between Trypanosoma cruzi -1 and Triatoma brasiliensis . A group of 1st instar nymphs was initially fed on T. cruzi-infected mice and a control group was fed on uninfected mice. From the second feeding onwards, both groups were otherwise fed on non-infected mice. The resulting adults were grouped in pairs: infected male/uninfected female, uninfected male/infected female, infected male and female and uninfected male/uninfected female. The infection affected only the 1st instar nymphs, which took significantly more time to reach the 2nd instar than uninfected nymphs. The differences in the molting time between the infected and uninfected nymphs from the 2nd to the 5th instars were not statistically significant. Both groups presented similar rates of nymphal mortality and reproductive performance was not significantly affected by infection in any of the treatments

    Risk Presented by Copernicia prunifera Palm Trees in the Rhodnius nasutus Distribution in a Chagas Disease-endemic Area of the Brazilian Northeast

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2019-04-09T12:37:12Z No. of bitstreams: 1 MarliM_LIma_etal_IOC_2008.pdf: 69044 bytes, checksum: 15b296db575fe504febad8a9368241bf (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-04-09T12:53:44Z (GMT) No. of bitstreams: 1 MarliM_LIma_etal_IOC_2008.pdf: 69044 bytes, checksum: 15b296db575fe504febad8a9368241bf (MD5)Made available in DSpace on 2019-04-09T12:53:44Z (GMT). No. of bitstreams: 1 MarliM_LIma_etal_IOC_2008.pdf: 69044 bytes, checksum: 15b296db575fe504febad8a9368241bf (MD5) Previous issue date: 2008Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Eco-Epidemiologia da Doença de Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Eco-Epidemiologia da Doença de Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Eco-Epidemiologia da Doença de Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Eco-Epidemiologia da Doença de Chagas. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Sergio Arouca. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Doenças Tropicais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Doenças Tropicais. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Eco-Epidemiologia da Doença de Chagas. Rio de Janeiro, RJ, Brasil.With the aid of live-bait traps, we studied the risk that Copernicia prunifera palm trees, present in both periurban and rural localities of an endemic Brazilian northeast Chagas disease region, represent to domestic infestation by Rhodnius nasutus. In this area, this important vector has been encountered harboring and transmitting Trypanosoma cruzi ,the etiologic agent of the American trypanosomiasis,to mammals, ossibly including humans. Results indicate that this bug colonizes C. prunifera palm trees of both regions, mainly in dry seasons, and is infected with high levels of T. cruzi. Although more triatomines were captured in rural areas, proportionally the number of infected bugs from periurban regions was much higher. Herein we address the epidemiologic implications and challenge for the Brazilian health authorities to control the disease in this region, where the native palm trees have been largely destroyed causing a severe disturbance in the environmental equilibrium
    corecore