160 research outputs found

    Perception of Loudness Is Influenced by Emotion

    Get PDF
    Loudness perception is thought to be a modular system that is unaffected by other brain systems. We tested the hypothesis that loudness perception can be influenced by negative affect using a conditioning paradigm, where some auditory stimuli were paired with aversive experiences while others were not. We found that the same auditory stimulus was reported as being louder, more negative and fear-inducing when it was conditioned with an aversive experience, compared to when it was used as a control stimulus. This result provides support for an important role of emotion in auditory perception

    Top-down and bottom-up modulation in processing bimodal face/voice stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Processing of multimodal information is a critical capacity of the human brain, with classic studies showing bimodal stimulation either facilitating or interfering in perceptual processing. Comparing activity to congruent and incongruent bimodal stimuli can reveal sensory dominance in particular cognitive tasks.</p> <p>Results</p> <p>We investigated audiovisual interactions driven by stimulus properties (bottom-up influences) or by task (top-down influences) on congruent and incongruent simultaneously presented faces and voices while ERPs were recorded. Subjects performed gender categorisation, directing attention either to faces or to voices and also judged whether the face/voice stimuli were congruent in terms of gender. Behaviourally, the unattended modality affected processing in the attended modality: the disruption was greater for attended voices. ERPs revealed top-down modulations of early brain processing (30-100 ms) over unisensory cortices. No effects were found on N170 or VPP, but from 180-230 ms larger right frontal activity was seen for incongruent than congruent stimuli.</p> <p>Conclusions</p> <p>Our data demonstrates that in a gender categorisation task the processing of faces dominate over the processing of voices. Brain activity showed different modulation by top-down and bottom-up information. Top-down influences modulated early brain activity whereas bottom-up interactions occurred relatively late.</p

    Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    Get PDF
    Background: Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey’s escape response by startling fish with their body before striking. The feint usually startles fish toward the snake’s approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake’s head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings: Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake’s body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish’s head, such that the snake’s jaws and the fish’s translating head usually converged. Several different types of predictive strikes were observed. Conclusions: The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime

    TRAPPC4-ERK2 Interaction Activates ERK1/2, Modulates Its Nuclear Localization and Regulates Proliferation and Apoptosis of Colorectal Cancer Cells

    Get PDF
    The trafficking protein particle complex 4 (TRAPPC4) is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK) pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP) and glutathione S-transferase (GST) pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC) cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway

    High body mass index is not associated with atopy in schoolchildren living in rural and urban areas of Ghana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Factors which determine the development of atopy and the observed rural-urban gradient in its prevalence are not fully understood. High body mass index (BMI) has been associated with asthma and potentially atopy in industrialized countries. In developing countries, the transition from rural to urban areas has been associated with lifestyle changes and an increased prevalence of high BMI; however, the effect of high BMI on atopy remains unknown in this population. We therefore investigated the association between high BMI and atopy among schoolchildren living in rural and urban areas of Ghana.</p> <p>Methods</p> <p>Data on skin prick testing, anthropometric, parasitological, demographic and lifestyle information for 1,482 schoolchildren aged 6-15 years was collected. Atopy was defined as sensitization to at least one tested allergen whilst the Centres for Disease Control and Prevention (CDC, Atlanta) growth reference charts were used in defining high BMI as BMI ≥ the 85<sup>th </sup>percentile. Logistic regression was performed to investigate the association between high BMI and atopy whilst adjusting for potential confounding factors.</p> <p>Results</p> <p>The following prevalences were observed for high BMI [Rural: 16%, Urban: 10.8%, p < 0.001] and atopy [Rural: 25.1%, Urban: 17.8%, p < 0.001]. High BMI was not associated with atopy; but an inverse association was observed between underweight and atopy [OR: 0.57, 95% CI: 0.33-0.99]. Significant associations were also observed with male sex [Rural: OR: 1.49, 95% CI: 1.06-2.08; Urban: OR: 1.90, 95% CI: 1.30-2.79], and in the urban site with older age [OR: 1.76, 95% CI: 1.00-3.07], family history of asthma [OR: 1.58, 95% CI: 1.01-2.47] and occupational status of parent [OR: 0.33, 95% CI: 0.12-0.93]; whilst co-infection with intestinal parasites [OR: 2.47, 95% CI: 1.01-6.04] was associated with atopy in the rural site. After multivariate adjustment, male sex, older age and family history of asthma remained significant.</p> <p>Conclusions</p> <p>In Ghanaian schoolchildren, high BMI was not associated with atopy. Further studies are warranted to clarify the relationship between body weight and atopy in children subjected to rapid life-style changes associated with urbanization of their environments.</p

    A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.</p> <p>Results</p> <p>Results of source modeling showed multimodal activations in the anterior part of the cingulate cortex (ACC) and hippocampal region (Hip). The activity in the ACC was biphasic. In all sensory modalities, the first component of ACC activity peaked 30–56 ms later than the peak of the major modality-specific activity, the second component of ACC activity peaked 117–145 ms later than the peak of the first component, and the activity in Hip peaked 43–77 ms later than the second component of ACC activity.</p> <p>Conclusion</p> <p>The temporal sequence of activations through modality-specific and multimodal pathways was similar among all sensory modalities.</p

    Seeing Emotion with Your Ears: Emotional Prosody Implicitly Guides Visual Attention to Faces

    Get PDF
    Interpersonal communication involves the processing of multimodal emotional cues, particularly facial expressions (visual modality) and emotional speech prosody (auditory modality) which can interact during information processing. Here, we investigated whether the implicit processing of emotional prosody systematically influences gaze behavior to facial expressions of emotion. We analyzed the eye movements of 31 participants as they scanned a visual array of four emotional faces portraying fear, anger, happiness, and neutrality, while listening to an emotionally-inflected pseudo-utterance (Someone migged the pazing) uttered in a congruent or incongruent tone. Participants heard the emotional utterance during the first 1250 milliseconds of a five-second visual array and then performed an immediate recall decision about the face they had just seen. The frequency and duration of first saccades and of total looks in three temporal windows ([0–1250 ms], [1250–2500 ms], [2500–5000 ms]) were analyzed according to the emotional content of faces and voices. Results showed that participants looked longer and more frequently at faces that matched the prosody in all three time windows (emotion congruency effect), although this effect was often emotion-specific (with greatest effects for fear). Effects of prosody on visual attention to faces persisted over time and could be detected long after the auditory information was no longer present. These data imply that emotional prosody is processed automatically during communication and that these cues play a critical role in how humans respond to related visual cues in the environment, such as facial expressions

    Regulators of AWC-Mediated Olfactory Plasticity in Caenorhabditis elegans

    Get PDF
    While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron

    The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines

    Get PDF
    Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3
    corecore