
Data Min Knowl Disc (2017) 31:1872–1902
DOI 10.1007/s10618-017-0512-3

Sports analytics for professional speed skating

Arno Knobbe1,2 · Jac Orie3,4 · Nico Hofman3,4,5 ·
Benjamin van der Burgh1,6 · Ricardo Cachucho1

Received: 7 March 2016 / Accepted: 12 May 2017 / Published online: 27 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract In elite sports, training schedules are becoming increasingly complex, and a
large number of parameters of such schedules need to be tuned to the specific physique
of a given athlete. In this paper, we describe how extensive analysis of historical data
canhelp optimise these parameters, andhowpossible pitfalls of under- andovertraining
in the past can be avoided in future schedules.We treat the series of exercises an athlete
undergoes as a discrete sequence of attributed events, that can be aggregated in various
ways, to capture the many ways in which an athlete can prepare for an important
test event. We report on a cooperation with the elite speed skating team LottoNL-
Jumbo, who have recorded detailed training data over the last 15years. The aim of the
project was to analyse this potential source of knowledge, and extract actionable and
interpretable patterns that can provide input to future improvements in training. We
present two alternative techniques to aggregate sequences of exercises into a combined,
long-term training effect, one of which based on a sliding window, and one based on
a physiological model of how the body responds to exercise. Next, we use both linear
modelling and Subgroup Discovery to extract meaningful models of the data.
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1 Introduction

This paper describes research challenges related to a recent Sports Analytics project
between a leading Dutch professional speed skating team and data scientists from
Universiteit Leiden and Hogeschool van Amsterdam. During its history, the athletic
team, currently called LottoNL-Jumbo,1 has included numerous Dutch skaters that
competed at the European, world, and Olympic level, and presently includes a world
record holder and two Olympic medalists. The project involved 15years of detailed
training data kept by the coach of the team (second author of this paper) with the aim
of improving the training program and further optimising the performance of current
and future skaters of the team. In this paper, we report on the data science techniques
required to analyse this non-trivial data, and showcase findings for specific athletes. A
number of novel techniques are introduced to deal with the specifics of the recorded
data, and to produce interpretable and actionable results that can help fine-tune the
training programs.

Speed skating is a winter sport where athletes compete on skates to cover a given
distance on an oval (indoor) ice rink. Although there are various disciplines, including
marathons and short-track speed skating, we focus here on long-track speed skating,
which involves a 400m oval track with two lanes. Events over multiple distances exist,
ranging from 500 to 10,000m (for men), with each skater typically specialising in one
or two distances, depending on their physiology and training. Although each race in
an event involves two skaters, the final standing is determined by the overall ranking
of times of all participants. This effectively makes each race a time trial, where the
outcome of a given skater is only determined by their own performance (ignoring for
the moment the interference due to having to switch lanes). From a data mining point
of view, this is attractive since all results can be assumed independent, and one can
simply collect all race results of an athlete without having to consider the influence of
the ‘opponent’.

A typical season for a professional speed skater lasts elevenmonths, with onemonth
of break at the end of the (winter) season. Of these eleven months, roughly five months
involve the actual competition season, such that six months of the season are spent
in relative isolation, in preparation for competition. Training consists of a complex
mixture of training impulses of various types, with an emphasis on physical rather than
technical training (in part caused by the lack of good quality ice during the summer). A
training program is intentionally mixed, with different types of activities and periods
of roughly 2weeks in which certain physical loads are emphasised or avoided. The
aim here is to trigger different physiological mechanisms and to avoid exhausting or
desensitising certain parts of the system by a too monotonous training regimen. Aside
from training, a skater’s routine consists of regular test moments, which during winter
are simply the races, and during the preparation season standardised physical tests of
various types (Åstrand and Ryhming 1954; Vandewalle et al. 1987).

The available data, painstakingly collected by the coach, involves primarily descrip-
tions of the daily training activities, partly structured and partly free text. The structured

1 Commercial speed skating teams need to regularly change their name, to reflect the sponsors. Over the
last 2years, the team has been sponsored by the Dutch Lotto and supermarket chain Jumbo.
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part of the description is very consistent, and captures a classification of the nature of
the training (e.g. “cycling extensive endurance”), as well as numeric values indicating
the duration (in minutes) and intensity (on a subjective scale of 1–10) of the session.
Training data is specific to individual athletes, and the intensity of the training was
obtained from the athlete, post hoc. With six training days per week, and potentially
two sessions per day, this amounts to roughly 450 sessions per season, making for a
substantial data collection per athlete/season. Next, several datasets are available that
capture test events. These include race results that were scraped from the internet,2 as
well as physical test results, which were primarily performed during summer to get an
indication of the level of fitness and the efficacy of the training program thus far. Note
that several different datasets and associated mining tasks can be derived from this
combined data, depending on the choice of entity involved. For example, one could
produce a dataset describing races of a specific distance, for a given skater, with the
race outcome as dependent variable, and the training activities prior to each race as
independent variables. Equally useful, one could take all outcomes of a specific test
as entities, have a combination of race and test results, or even combine different dis-
tances or athletes. In our experiments, we will consider several of these possibilities.
However, in each case the problem is essentially a regression task, since the target
variable is numeric [e.g. time on the 500m or the VO2max value (Kenney et al. 2015;
McArdle et al. 2014) established with a cycling test].

While evidently being in the regression domain, it is not immediately clear what the
independent variables of our task might be. Clearly, the independent variables should
capture aspects of the training program prior to the events in question. However, the
available data is a long sequence of events with a small number of characteristics
(type, duration, intensity, …), so some form of transformation is necessary to arrive at
an attribute-value representation that is amenable to main-stream regression analysis.
In this paper, we take an aggregation-based feature construction approach, inspired
by earlier work in Cachucho et al. (2014), in order to derive a fairly extensive set of
features that capture the preparation (training, but also absence thereof) from various
angles, for example focussing on specific periods prior to the test event, or on specific
intensity zones. In its basic form, the aggregation will take place over windows of
varying lengths (ranging from one day to several weeks) using different aggregate
functions and variables, with specifiers such as training type and intensity zones. In
a more elaborate approach, developed for this specific purpose, the aggregation will
take the form of convolution with a physiology-inspired kernel consisting of several
exponential decay functions of varying half times. This kernel is inspired by the so-
called Fitness-Fatigue model (Calvert et al. 1976), that tries to capture how the human
body responds to a specific training impulse over the course of time.

After having obtained a suitable attribute-value representation with potentially pre-
dictive features, the next challenge is to produce meaningful models from this dataset.
The overall aim of this project is to provide the coaching staff with easy-to-understand,
actionable pointers as to how to fine-tune the training routines, and avoid pitfalls of
under and over-training. Therefore, we specifically intend to discover interpretable

2 http://www.osta.nl.
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patterns, that are relatively easy to understand by the domain experts, and ideally do
not involve a great many variables. We will be working with two types of regression
techniques. Assuming mostly linear dependencies between the aggregated features
and the target variable, regularised linear regressionmethods such as LASSO (Fried-
man et al. 2010; Tibshirani 1994) are attractive since they select features and produce
relatively concise models of the data. However, with the physiological domain at hand,
it is likely that non-linear dependencies will also exist, and rather, one expects thresh-
olds to exist on the features, where too large or too low a value (e.g. training load)
will produce sub-optimal results. For such phenomena, we expect Subgroup Discov-
ery (Klösgen 2002; Grosskreutz and Rüping 2009; Atzmüller and Lemmerich 2009;
Pieters et al. 2010) to produce more useful results.

As a by-product of this project, we have developed ways of connecting the classical
linear regression approaches to the regression setting of Subgroup Discovery, thus
making linear models and subgroups comparable. We will show how subgroups can
be interpreted as (potentially higher-dimensional) step functions such that their fit
can be compared with that of the linear function. Possibly, this may require the linear
models to be of low dimension, even involving only single variables, but this is actually
attractive from an interpretation point of view, as argued above. Treating linear models
and subgroups similarly also allows us to apply statistical tests to either, and compare
the outcome of both approaches on significance.

This Sports Analytics paper has two sides. On the Sports side, we present some
interesting findings that are of practical relevance to the team, with the following key
contributions:

– The application of the Fitness-Fatigue model and the fitting of this model to indi-
vidual skaters, where the parameters of the model convey key properties of each
skater.

– Various demonstrative, interpretable patterns concerning improved training prac-
tices.

– The presentation of results relating to (1) competitions, and (2) physical tests.
– The capability to produce detailed findings for other skaters.

On the Analytics side, we introduce a number of new ways to exploit detailed training
data, of relevance not just in the speed skating discipline, and in some cases applicable
to other analytics domains also. Key contributions are:

– Introduction of (conditional) aggregation as a way of aggregating discrete
sequences of events, and producing a range of features that capture various aspects
of those sequences.

– Aggregation by means of two options: one that is easy to compute and interpret
(uniform window), one that is more physiologically plausible, and at the same
time harder to compute (the Fitness-Fatigue model).

– Application of linear modelling and Subgroup Discovery in order to select key
features and produce interpretable models.

– Introduction of a novel SD quality measure, Explained Variance.
– Evaluation of models in terms of R2 and p values, that makes linear models and
subgroups immediately comparable.
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2 Speed skating and sports analytics

The (long-track) speed skating takes place on an oval track 400m in length. Races are
typically held with two participants at each time (skating in separate lanes), but each
participant is ranked on their individual time. Both men and women compete, in sepa-
rate competitions. Races come in various distances, but the most common distances at
major events are 500, 1000, 1500, 3000, 5000 and 10,000m, of which the last distance
only applies to men, who in turn do not skate the 3000m. These disciplines are usu-
ally divided into sprint, medium, and long distance, and skaters typically specialise
in one of these, and compete in only a few of these disciplines, although participation
is facultative. Each category requires a specific type of physiology, which explains
the specialisation of athletes. Furthermore, each distance requires a specific type of
training, and exercises for one distance may actually harm the performance on other
distances (McArdle et al. 2014; Kenney et al. 2015). This implies that our analysis
will often be specific to a small number of similar distances, or even be specific to
individual athletes. Since the training programs are well-developed, and the senior
athletes will have several years of experience working with the coach, the produced
findings may be subtle, which will often call for an athlete-specific approach.

Even though races for a specific event can be considered time trials, there will
be a level of variance in the race results that cannot be explained by differences in
race preparation and training. It is a well-know fact within speed skating that times are
determined to a reasonable degree by the ice rink. First of all, the ice properties will dif-
fer from one venue to the next, and top venues (where major events are organised) will
have better ice maintenance techniques and experience. Another factor that influences
the times, besides ice quality, is the altitude of the venue, with higher ice rinks tending
to be faster due to the lower air resistance. The top four of fastest venues consists of
Salt Lake City, USA (1425 m elevation), Calgary, Canada (1034 m), Heerenveen, the
Netherlands (0 m), and Sochi, Russia (5 m). In order to compensate for the difference
in rink speeds, we have opted to work with relative times rather than recorded times.

Definition 1 (Relative time) For a race of distance d, by a skater of gender g, at ice
rink r , finishing in time t (in seconds), the relative time trel is defined as

trel = t/trec(d, g, r)

where trec(d, g, r) is the record for a specific discipline and ice rink.

Relative time will produce race results slightly above 1.0 or exactly 1.0 if a race
either produced or replicated a rink record. The use of relative time not only allows
comparisons between results at different venues, but theoretically also comparisons
between results in different disciplines or even between men and women, although
one might be comparing apples and oranges here on other aspects of the data. The rink
records were scraped from the DutchWikipedia page3 that collects local records. Note
that the use of records to estimate the speed of a rink is not flawless. First of all, records
are continuously subject to improvement, such that the definition of relative time is

3 https://nl.wikipedia.org/wiki/Lijst_van_snelste_ijsbanen_ter_wereld.
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sometimes problematic. Next, some venues rarely host international events, such that
their records do not fairly represent the theoretical speed of the rink, and actually
produce under-estimates of the relative times athletes set (meaning they appear faster
than they are). In order to avoid constantly having to update the list of records and
subsequent analyses, which is rather time-consuming, we choose to fix the records at
a particular point in time. A minor side effect of this is that some newer results may
actually have a relative time below 1.0. Our collected list of international rink records
will be made available4 as part of this publication.

3 Feature construction by aggregation

As explained in the introduction, the training data takes the form of a sequence of
annotated events, corresponding to the individual exercises an athlete performs.While
being valuable information, this sequential representation will require certain transfor-
mations in order to elicit general characteristics of an athlete’s preparation for a race.
Individual exercises will generally not play a deciding role in the outcome (unless of
very extreme nature), and it is the combined nature of exercises that determines the
effect of the training program. Therefore, some form of aggregation is required to draw
out the various aspects of training that potentially play a role. Although there is a large
body of knowledge about the effect of certain types of exercise in the sports physiology
literature, it is still uncertain what aspects of training and preparation determine the
variance in race results that still remains, as for example exemplified in Fig. 1. For
this reason, our feature construction approach will include a rather large collection of
features, with the aim of including many angles and leaving room for discovery in
later stages of the analysis. Furthermore, it is not quite clear how long the effect of spe-
cific exercises lasts for individual athletes, and thus what period prior to the test event
should actually be included in the aggregation. Our set of constructed features will
therefore involve time windows of various lengths, ranging from one day to several
weeks.

In this paper, we will consider two general aggregation approaches, the first of
which involves uniform aggregation over the various windows.

3.1 Uniform aggregation

Before defining the notion of a (time) window, we first formalise the events to be
aggregated, as they appear in the data of our application.

Definition 2 (Exercise) An exercise is defined as a tuple e = (t, ampm, dur,
int, load), where t is the date of the exercise, ampm is a binary variable indicat-
ing the morning or afternoon session. Numeric values dur , int , and load, indicate the
duration (in minutes), the subjective intensity (on a scale of 1–10), and the load (in
intensity-minutes) of the exercise, respectively.

The three crucial numeric attributes of an exercise specify the following:

4 http://datamining.liacs.nl/rink-records.txt.
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Fig. 1 Distribution of relative times over 1000 m as estimated by kernel density estimation (based on 75
results, with a Gaussian kernel of σ = 0.0051). The probability density estimate continuing below 1.0 is an
artefact of the KDE. The best time in the list is actually a rink record in the Hague (the Netherlands) at 1.0

– The duration simply specifies the length of the exercise. Durations tend to be
rounded to quarters of hours (especially for longer exercises), but this is deliberate,
and athletes generally adhere to the required duration.

– The intensity indicates how heavy the exercise was, as perceived by the athlete,
with 10 being the intensity of a race itself. During training, values of 9 or 10 are
rare. Although intensity is a subjective measure, the athletes are very used to it,
and will rate specific trainings fairly consistently.

– The load is defined as the product of duration and intensity, with the intention
of capturing the total energy expenditure during the exercise. Although load is
actually a derived attribute (it does not appear in our normalised database, for that
reason), we include it in the definition of an exercise because it plays a crucial role
both in the modelling as in the reasoning behind the training program.5

Note that the races themselves also appear as exercises in the database, since it is
crucial to include the training load produced by such intense events, when considering
the preparation for other races. In speed skating, several races often take place in a
single weekend, such that later races are influenced by earlier ones.

5 Note that the definition in terms of a product of duration and intensitymight be too simplistic, since neither
duration nor intensity may be a linear scale. Doubling the length of an exercise may have an exaggerated
effect if the intensity is (too) high, and doubling the intensity makes the exercise entirely different in nature,
addressing different metabolic systems.
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Definition 3 (Time Window) A (time) window wt,m is a set of exercises e1, . . . , en ,
such that all dates ei .t are before t , and notmore than 2m−1 days before t : t−2m+1 ≤
ei .t < t .

Note that day t itself is not part of the window. For reasons that will become clear in
later sections, we have opted to define the length of a window in terms of its middle
m, essentially indicating the ‘centre of mass’ of the window. A window wt,1 will thus
include the 1day prior to t , wt,2 indicates the 3days prior to t , and so on.

For a window w, the following primitive aggregates will be considered:

Count Simply the number of exercises in w: |w|.
Sum(duration) The sum of durations of the exercises in w:

∑
i ei .dur .

Sum(intensity) The sum of intensities of the exercises in w:
∑

i ei .int .
Sum(load) The sum of loads of the exercises in w:

∑
i ei .load .

Avg(duration) The average duration of the exercises in w:
∑

i ei .dur/|w|.
Avg(intensity) The average intensity of the exercises in w:

∑
i ei .int/|w|.

Avg(load) The average load of the exercises in w:
∑

i ei .load/|w|.
Max(duration) The maximum duration of the exercises in w: maxi ei .dur .
Max(intensity) The maximum intensity of the exercises in w: maxi ei .int .
Max(load) The maximum load of the exercises in w: maxi ei .load .

Aggregation using the minimum was deemed senseless, since a very light training has
little effect, and one could interpret daily rest periods as very light exercises anyway.

3.1.1 Specifiers

Each primitive aggregate listed above can be applied to all the exercises in a given
window, or just to subsets of exercises from specific categories. These subsets are
specified by what we will refer to as specifiers. We apply the following specifiers:

Morning/afternoon sessions By specifying am, pm or no specifier at all, the aggre-
gate can include only the morning sessions, only the afternoon sessions, or all
sessions, respectively. Note that during the winter, the coach will plan exercises on
the ice in the morning, and alternative training in the afternoon, so distinguishing
between those may be fruitful.

Intensity intervals Exercises at different intensities will trigger different parts of
the system, and hence will produce a different training stimulus. As specifier, we
optionally select only exercises within specific intensity intervals [l, u], where
l ∈ [1, 10] and u ∈ [l, 10].

Note that each type of specifier will introduce multiple variants of the primitive aggre-
gates. For ampm, adding specifiers will raise the number of aggregates (per window
size) from 10 to 30. For the intensity-intervals, there will be 1/2 · 10 · (10 + 1) = 55
variants of each primitive. However they are only applied to the 4 primitive aggregates
that do not involve intensity and load, producing 55 · 4 = 220 aggregates. In order to
avoid combinatorial explosion of the aggregate collection, we do not include combi-
nations of specifiers (such as low intensities in morning sessions). In total, there will
be 250 aggregates per window.
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In “Appendix A”, details are provided about how the required form of aggregation
can be achieved in a relational database using SQL statements. This appendix explains
how the data is modelled as two tables, one listing all results of races (Result), and
one listing all exercises (Exercise). There is an implicit one-to-many relation-
ship between these two tables, and joining and subsequent aggregation (by means
of a GROUP BY statement) will combine details of individual exercises into several
aggregated features on the level of Result.

3.1.2 Aggregation and convolution

Observe that such uniform aggregation over a window can be seen as a form of
convolution with a rectangular kernel (Stranneby and Walker 2004). The convolution
of a time series x(t) (in this case any of the training parameters that are aggregated)
applies a kernel to the series to obtain a new series y(t) as follows:

y(t) = h ∗ x(t) =
∞∑

i=−∞
h(i)x(t − i)

Here, h refers to the kernel, which is required to sum to 1 over its domain. In the case
of a uniform window, the kernel is essentially a rectangular function (remember that
2m − 1 is the length of the window):

h(t) =
{
1/(2m − 1) if 0 ≤ t ≤ 2m − 1

0 otherwise

Since the rectangular kernel is zero over a large part of its domain, the convoluted
function y(t) can be computed much faster. In the next section, we will introduce a
kernel that is both more natural and more expensive to compute.

3.2 The Fitness-Fatigue model

Although uniform aggregation is intuitive and straightforward to implement (and as
we will see, provides fairly good models), it is somewhat unnatural. First of all, it is
unlikely that all exercises over a period of, say, 4weeks will have the same influence
on the level of fitness at a race. Rather, one would expect that exercises several weeks
ago have a much smaller influence than more recent ones. Second, the hard distinction
between an exercise 28days ago, and one 29days ago seems unnatural, and may
introduce minor artefacts in the constructed features. Finally, there is a general pattern
where the initial effect of an exercise is negative, while after a short period of rest and
recuperation, the effect is positive. Ideally, the aggregated features should exhibit such
behaviour.

In this section, we introduce a type of aggregation based on convolution with a
more natural gradually progressing kernel. We will use a multi-component kernel that
is taken from the physiology literature (Calvert et al. 1976) and aims to model the
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complex way in which a human body responds to exercise by initial fatigue, followed
by a slight improvement in performance, the effects of which die out gradually over
the course of several week, returning to a state of fitness comparable to that prior to
the exercise.

The core of this kernel is based on the exponential decay function, as follows:

he(m) = e−λm, m ≥ 0

The parameter λ here determines the speed with which this kernel decays towards
zero, in other words, the speed with which the effects of exercise diminish over time.
Although the exponential decay is defined in terms of λ (with unit s−1), we will
primarily define a specific kernel in terms of the parameter τ (in units s, or more
conveniently, in days), which corresponds to the ‘mean lifetime’ of the kernel, and as
such can be interpreted as the centre of mass of the kernel. This makes this parameter
immediately comparable to parameterm of a uniformwindow, which is also the centre
of mass of the kernel. The simple relationship between τ and λ is as follows:

τ = 1/λ

The exponential decay function effectively models the diminishing positive effect of
an exercise as time passes. However, it does not include the tiring effects of exercise
in the few days after training, which may outweigh the positive influence of training.
For this reason, Calvert et al. (1976) introduced the so-called Fitness-Fatigue model,
which models these two effects as two components of a kernel with different weights
and different decay factors, as follows:

h2(m) = e−λ f i tm − Ke−λ f atm, m ≥ 0

λ f i t determines the speedwithwhich the positive effects of training (the fitness) dimin-
ish, and typically corresponds to a τ f i t in the order of months, while λ f at determines
the shape of the fatigue curve immediately after the exercise. The associated τ f at is
typically in the range of two weeks. Initially, the influence of fatigue is about twice as
big as that of the improved fitness (determined by the value of K ).

The fitness in the above two-component model is assumed to be immediately
improved after the exercise, which in practice is not the case. The desired adaptation
in various metabolic systems will not take effect until several days after the exercise,
such that the fitness will need to be modeled with an additional component (Calvert
et al. 1976), producing the following three-component kernel:

h f f (m) = (e−λ f i tm − e−λdelm) − Ke−λ f atm, m ≥ 0

where λdel affects the exponential function that reduces the initial fitness. In Fig. 2,
the combination of fitness and fatigue into this kernel is demonstrated. In Calvert
et al. (1976), values are given for the associated parameters, obtained by fitting the
convolved function to athletic data, producing the values below. Although these values
seem reasonable, they will be athlete- and specialism-specific, such that we will fit
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Fig. 2 The three-component Fitness-Fatigue kernel (in solid black) as a function of time after the exercise
(in days). The fitness and fatigue parts are also shown, in solid grey and dashed blue, respectively (Color
figure online)

these values to specific datasets collected, in the experimental section. The published
values for the parameters are as follows:

τ f i t = 50 days, τdel = 5 days, τ f at = 15 days, K = 2.0

“AppendixB” presents implementation details of the Fitness-Fatiguemodel in SQL.

4 Modelling approaches

4.1 Regularised linear regression

In the previous section, we explained the procedures to build large sets of interpretable
features about the training, that might be able to explain the target variables of perfor-
mance. These target variables might be a linear function of a subset of the aggregate
features, but we do not know which ones beforehand. In order to find a good subset of
aggregate features for each target variable, we use LASSO (Tibshirani 1994), amethod
for estimating generalised linear models using convex penalties (l1) to achieve sparse
solutions (Friedman et al. 2010).

Assume t̄ is the mean of the target variable:

t̄ = 1

n

n∑

i=1

ti
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The coefficient of determination R2 is now defined as:

R2(t, f ) = 1 −
∑

i (ti − fi )2
∑

i (ti − t̄)2
(1)

where
∑

i (ti − fi )2 is the sum of squared differences between the actual and predicted
target value, and

∑
i (ti − t̄)2 is the sum of squared differences between the target

value and the constant function t = t̄ . Note that R2 is between 0 and 1 whenever the
model f is produced using the Ordinary Least Squares method, but may be lower than
0 for functions derived differently. R2 is often interpreted as the explained variance,
where a value of 0 means that no variance in the dependent variable can be explained
by variance in the independent variable(s), and a value of 1 means that all variance
can thus be explained (a perfect fit of the data).

4.2 Subgroup discovery

The previous section focussed on linear models, assuming that the dependencies we
hope to discover are indeed linear in nature. Unfortunately, in the domain we are
focussing on, it is quite likely that the relationship between (extent of) training and
performance is non-linear. When doing a certain training routine, it can be expected
that the relationship is in fact curved,with peak performance being achieved at a certain
optimal load on the human body. Doing too little will not achieve the right effect, but
doing too much of the training also produces sub-optimal performance. Specifically,
one can expect thresholds in the training load above (or below) which performance
will rapidly diminish. Therefore, we will also experiment with modelling techniques
that are more local in nature, and find subsets of the data where performance was
surprisingly low, as well as finding variables and thresholds that will identify such
sub-optimal subsets.

Our paradigm of choice for such (potentially) non-linear data is that of Subgroup
Discovery (Klösgen 2002;Novak et al. 2009). It is a datamining framework that aims to
find interesting subgroups satisfying certain user-specified constraints. In this process,
we explore a large search space to find subsets of the data that have a relatively high
value for a user-defined quality measure. We consider constraints on attributes, and
determinewhich records satisfy these constraints. These records then form a subgroup.
The constraints on the attributes (the description) form an intensional specification of
a part of our dataset, and the subgroup forms its extension (that is, an exhaustive
enumeration of the members of the subgroup).

SubgroupDiscovery (SD) is a supervised technique: there is a target concept defined
on one or several designated target attributes. The most basic form of this is a single
target, either nominal or numeric. SD then aims to find subgroups for which the
distribution over this target is substantially different from that on thewhole population,
the extent of which is captured by a quality measure. This can be any function ϕ :
2D → R assigning a numeric value to each subgroup. The choice of quality measure
defines what we are looking for in a subgroup.
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The specific SD algorithm we use in the experiments uses beam search to search
through the potentially large space of candidate subgroups. This type of search works
top-down, starting with a consideration of all single-condition subgroups. Each candi-
date subgroup is evaluated on the data bymeans of the qualitymeasure, and sufficiently
interesting subgroups are added to the result set. Of the considered subgroups, only
the most promising ones (in terms of quality) are added to the beam, which are the
subgroups that will be extended with new conditions to form the next level of the
search. The size of the beam w is a parameter that is set by the analyst. Smaller values
will produce a more greedy search, while larger values will cover a larger portion of
the search space. How many levels the search will continue (and hence how complex
the subgroup descriptions will be) is governed by the search depth parameter d. Espe-
cially in our case, where fairly little data is available, d will be set to a fairly small
value (at most d = 3 in our experiments).

A number of papers in the literature discuss SD variants for regression tasks, which
to some extent are applicable to our case. One group of techniques focusses on finding
subgroups where the target shows a surprisingly high (or conversely, low) average
value (Grosskreutz and Rüping 2009; Atzmüller and Lemmerich 2009; Pieters et al.
2010; Lemmerich et al. 2015). Typical proposed quality measures use statistical tests
to capture the level of deviation within the subgroup, often weighted by the size of the
subgroup, for example the mean test or z-score (Pieters et al. 2010),

ϕz(S) = √|S|μS − μ0

σS

whereμS andμ0 stand for the subgroup and databasemeans of the target, respectively,
and σS denotes the standard deviation within the subgroup S. Other works consider the
distribution of target values within the subgroup (Jorge et al. 2006), and use statistical
measures for assessing distributional differences.

In the majority of these quality measures, the interestingness is computed from the
distribution of the subgroup alone, or when compared to that of the entire dataset.
Here, we take a slightly different approach, and consider the subgroup description a
dichotomy of the data, where both the distribution of the subgroup as well as of the
complement play a role in determining the quality of the dichotomy. Therefore, we
introduce a new quality measure for numeric targets in SD. This quality measure uses
the well-known notion of R2 to capture how well a subgroup and its corresponding
complement describe the data, in comparison to the distribution of the entire dataset,
so ignoring the dichotomy. Hence, we treat the subgroup as a model of the data, to be
more specific a step function of two parts. The following two averages over the target
t provide the constant prediction for, respectively, the subgroup and its complement:

t̄subg = 1

|S|
∑

i∈S
ti

t̄comp = 1

n − |S|
∑

i /∈S
ti

123



Sports analytics for professional speed skating 1885

These two average values now lead to the following step function:

fS(i) =
{
t̄subg if i ∈ S

t̄comp if i /∈ S

The quality measure Explained Variance is now simply defined as follows:

ϕEV (S) = R2(t, fS)

This quality measure uses the definition of R2 given in the previous section, which
was independent of the nature of the model f . Note that by using this quality measure,
we have a way of directly comparing the discovered subgroups (with corresponding
step functions) to the linear models, which is a clear benefit over the traditional qual-
ity measures. We furthermore observe that the step functions, despite representing
dichotomies, can be based on subgroups of multiple conditions. Therefore, the result-
ing step functions will be multi-dimensional (involving potentially multiple features).
The following proposition states that the values of Explained Variance are bounded
by [0, 1]. The usual interpretation of 1 as a perfect fit, and 0 as none of the variance is
explained, still holds.

Proposition 1 Given a subgroup S, then ϕEV (S) ∈ [0, 1].
Proof (Bounds on regression quality) For R2 to be bigger than 1, the quotient (see Eq.
1) would need to result in a negative number, which is impossible since both terms
are sums of squares. So, we can focus on proving the ϕEV (S) ≥ 0 part. From the
definition of R2, we see that we need to prove that

∑
i (ti − t̄)2 ≥ ∑

i (ti − fi )2. Note
that

∑

i

(ti − fi )
2 =

∑

i∈S
(ti − t̄subg)

2 +
∑

i /∈S
(ti − t̄comp)

2

Differentiation of any sum of squared differences
∑

i (xi − c)2 will show that it is
minimised when c = x̄ , so

∑

i∈S
(ti − t̄subg)

2 ≤
∑

i∈S
(ti − t̄)2

and likewise for the complement. Combining these results, we get

∑

i

(ti − t̄)2 =
∑

i∈S
(ti − t̄)2 +

∑

i /∈S
(ti − t̄)2 ≥

∑

i

(ti − fi )
2

which proves our premise, and the proposition. �	
The quality measure introduced here was implemented in the Cortana Subgroup

Discovery tool (Meeng and Knobbe 2011).
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Table 1 Excerpt of the training data

Date ampm dur int load Comment

Tue May 13 am 150 3.5 525 2 × (20′D1; 5′D3)+ mostly D1, little D2

Tue May 13 pm 50 4 200 Slight cold, temp 37.1

Wed May 14 am 60 2.5 150 Temp 36.8, push hip in on left corner

Wed May 14 pm 90 5 450 Blocks 4′50′′
Thu May 15 am 60 3 180 Inline skating, cold

Thu May 15 pm 60 4 240

–

5 Experimental results

In order to demonstrate the kinds of analyses and results of the proposed methods
on actual data, and to test the benefits of individual techniques proposed above, we
experiment with data from four athletes of the LottoNL-Jumbo team, two male and
two female. All experiments were performed using three software components:

1. A relational database that organises all the different datasets and meta-data con-
cerning exercise and competition: the Performance Sports Repository (PSR).

2. A dashboard accessible over the Internet, that provides various views and visu-
alisations of the data, and allows online aggregation and linear modelling of the
data.

3. The generic Subgroup Discovery tool Cortana,6 which was extended for this pur-
pose with a direct database connection to the PSR, and the Explained Variance
quality measure (Meeng and Knobbe 2011).

Table 1 shows an example of the core data considered in these experiments: the
training data (in this case for a female skater specialising on the longer distances). Note
the diversity of the comments in the last column. These are currently not included in the
experiments described below. The column int , and consequently load, are subjective,
meaning they express the perceived intensity of the training. Although this is of course
intentional, subjectivity comes with its limitations. It should be noted though that all
experiments are athlete-specific, such that differences in how intensities are rated
between subjects is not an issue. This training data is then combined with a scraped
dataset about competition results, and aggregated to the level of competitions, as
described in previous sections.

Wewill demonstrate the results on the datasets listed in Table 2, collected from four
athletes.Next to competition data,we also have physical test data, forwhichweprovide
results for one of the athletes (M1 in the table below), for which we have 146 records.

We will generally describe three types of modelling of the data: (1) univariate
models, either using a linear or a step function, where we rank all features by R2, (2)
multivariate models using LASSO, and (3) Subgroup Discovery using Cortana. Note

6 Sources in Java and an executable of this tool can be downloaded from http://datamining.liacs.nl/cortana.
html.
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Table 2 Dataset details for
competition results of four
skaters

Gender Distance (m) Competitions Sessions

M1 Male 1000 75 2758

M2 Male 500 142 2930

F1 Female 1500 60 2230

F2 Female 500 22 1095

that univariate stepmodels can also be interpreted as subgroupswith a single condition,
such that results between settings 1 and 3 overlap to some extent. When mining for
subgroups, we use beam search to a fairly shallow depth, typically to a maximum
depth of three or less, depending on the experiment. When not further specified, the
subgroups (or their step functions) presented involve a single feature (d = 1). The
width of the beam is set to a default of w = 100 (candidates that proceed to the next
level). For the numeric attributes, the Cortana setting ‘best’ is applied, which means
that for each attribute, all numeric threshold are considered and the optimal split point
is selected. The resulting locally optimal subgroup is added to the result list if of
sufficiently quality, and conditionally added to the beam for further refinement.

Before considering more systematic experiments, for example, testing the merits of
the Fitness-Fatigue model, we first present results for a single skater, and demonstrate
the kinds of input given to the coach concerning possible changes to the training
schedule.

5.1 Demonstration of results

This section discusses results for female skater F1 who specialises in the medium to
long distances. We first focus on 1500m races, for which we have 60 examples over
a period of 5years. The average relative time for this skater was 1.0391, so 3.91%
above the track record. We have training details for the entire 5years, such that we can
aggregate the preparation for each of these races easily.

Uniform features We start with univariate results in the simplest setting: uniform
aggregates without specifiers and simple linear models. The best-fitting aggregate that
was found was max_load_1 with the following model:

y = −0.000014x + 1.042

The explained variance of this model is a mere R2 = 0.0563. The model starts with a
reasonable intercept, and encourages a high load (the product of duration and intensity)
on the day prior to the race. Although the effect is minor, this suggests that a peak right
before a race (possibly due to another race in the same weekend) is beneficial. The
step function associated with this aggregate function, with a threshold around 360, has
a more pronounced R2 = 0.1233. The two levels are trel = 1.043 for low maximum
loads versus 1.031.
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Table 3 Overview of selected uniform features

Feature Linear model R2 linear R2 step Low High

max_load_1 −0.000014x + 1.042 0.0563 0.1233 1.043 1.031

avg_intensity_19 −0.003952x + 1.052 0.0557 0.2231 1.044 1.028

max_duration_int5_17 0.000211x + 1.029 0.1491 0.3080 1.035 1.074

The second-best aggregate is avg_intensity_19, with model

y = −0.003952x + 1.052

which suggests that the intensity should be kept high over a period of almost 3weeks to
improve race times. This aggregate actually scores highest on explained variance of the
step function, with a minimum average intensity of 3.93 (low to moderate intensity).
Lower intensities suggest an expected relative time of trel = 1.044, whereas higher
values on average lead to relative times of trel = 1.028 (R2 = 0.2231). For clarity,
details of these three features are listed in Table 3.

Specifiers The addition of specifiers does a great deal to the quality of the univariate
models. The following aggregate scores the best on R2:

– max_duration_int5_17 (the largest period spent at intensity 5 for the last
17days prior to the race)

Exaggerating this type of training has a detrimental effect on the race outcome: longer
durations of this specific training type lead to higher times. The step function (R2 =
0.3080) caps this value at 70min. With longer durations of intensity 5, relative times
of trel = 1.074 are expected, compared to trel = 1.035 below this threshold (Fig. 3).

Fitness-Fatigue model Switching from uniform to FF features, we note that the fol-
lowing parameters provide the best (linear) aggregate, based on the sum of duration:
τ f i t = 39, τdel = 4.0, τ f at = 7.0, K = 2.0. The corresponding kernel is the one fea-
tured in Fig. 2 earlier in this paper. The associated explained variance is R2 = 0.1002.

Multi-variate model The individual features presented so far do not lead to very well-
fittingmodels, despite their role in informing the coach ofways to optimise the training
and avoiding some pitfalls of under- and overtraining. More precise models can of
course be obtained by involving multiple features. The graph in Fig. 4 presents the 60
results achieved by the skater, as well as the predicted times, by a multi-variate linear
model. The model, induced by the LASSO procedure, involves 18 features, selected
from the larger pool of uniform aggregates (ignoring the specifiers). The quality of
the model is R2 = 0.721, obtained on the training set.7 Although such models (and
more accurate models involving more complex aggregates) can be used to predict the
outcome of an upcoming race, this particular prediction is of limited value. Rather,

7 No distinction between training and test set was made for these experiments.
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Fig. 3 Graph showing the relation between max_duration_int5_17 and the relative time of the
subsequent race. The vertical blue line indicates the threshold (inclusive to the left) and the red the two
average times for subgroup and complement. The black line indicates the best-fitting simple linear equation
(Color figure online)
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Fig. 4 Obtained results over 60 historical races, compared to the predictions of a relatively simple LASSO
model based on the training sessions prior to each race

the model is more valuable from a knowledge discovery point of view, pointing to the
features that matter most. In this case, the 18 features mostly include duration over
short windows (1–5days), and intensities over longer windows (approx. 2weeks).
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Subgroups In the above text, we have already presented the following three sub-
groups8:

– max_load_1 ≤ 360 (R2 = 0.1233)
– avg_intensity_19 > 3.93 (R2 = 0.2231)
– max_duration_int5_17 ≤ 70 (R2 = 0.3080)

The first two subgroups relate to the experiment with just uniform aggregates, where
the second subgroup is the optimal step function found at depth 1. The third subgroup
relates to the experiment involving specifiers. While subgroups at depth 1 are inter-
esting since they point to individual predictive features, they capture only shallow
effects. We now present subgroups at greater depth, that indeed describe more com-
plex concepts. The best subgroup found on the uniform windows (without specifiers)
by Cortana at depth d ≤ 2 is

avg_intensity_20 > 3.94 ∨ sum_duration_2 > 170 (R2 = 0.4232)

Although Cortana produces subgroups as conjunctions of conditions, for reasons of
presentation this was logically inverted9 in the above subgroup. The subgroup, cov-
ering 17 cases, describes races with an average of 1.0299, compared to 1.0526 for
the remainder. It specifies that whenever the average intensity over the last 20days
is too low, and the total duration of exercises over the last 2days is also low, this
has a negative effect on the race result. Note how the explained variance has almost
doubled at d ≤ 2. Adding a third feature to the subgroups only produced a marginal
improvement, which is not uncommon in SD.

The addition of specifiers in combination with deeper subgroups produced slightly
better results, with the top subgroup being as follows:

avg_duration_int5_17 < 60 ∨
sum_duration_int6789_10 > 115 (R2 = 0.446)

Note that compared to the d = 1 result of R2 = 0.3080, this is a reasonable improve-
ment. The subgroup specifies that a lower duration of intensity 5 exercises over 17day,
or a higher duration of high-intensity exercises over 10days, is good.

Validation of results For the results above, one could wonder to what extent each
result is statistically significant. For individual models, be it linear or step function, it
is possible to compute a p value that indicates to what extent themodel might be due to
chance. Such p values will be reported in the detailed experiments in the next section.
However, we should note that we are generating a substantial number of features, such
that we are in fact testing multiple hypotheses. The best ranked result may thus appear
to be significant, even though this is just a consequence of themanymodels considered.

8 Although subgroups are interpreted here as dichotomies, we present them as either lower or upper thresh-
olds, such that cases meeting the condition(s) specified correspond to the faster races.
9 The original subgroup discovered, avg_intensity_20 ≤ 3.94∧sum_duration_2 ≤ 170, covers
the complement.
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Duivesteijn and Knobbe (2011) presents a method for validating the results of an SD
algorithm, by means of a distribution of false discoveries. This distribution is obtained
by running the algorithm repeatedly on the data after swap-randomising the target
attribute, thus capturing what maximum qualities can be obtained from random data
(that resembles the original data). Using the distribution, it is possible to set a lower
bound on the quality (in this case explained variance) as a function of the desired
significance level α. Assuming a significance level α = 0.05, this validation method
produces a lower bound of R2

min = 0.2907 for the uniform data without specifiers,
searching for subgroups at depth d = 1. This means that our optimal subgroup

avg_intensity_19 > 3.93 (R2 = 0.2231)

is not actually significant at α = 0.05. It is good to note that the lower bound produced
by the swap randomisation depends on the specific settings of the SD run. Specifically,
if the extent of the search is bigger, more hypotheses will be tested, such that the
lower bound will increase in order to account for the higher probability of finding a
seemingly interesting subgroup by chance.When increasing the search depth to d ≤ 2,
the procedure produces a lower bound of R2

min = 0.4212. This makes the earlier depth
2 result (without specifiers)

avg_intensity_20 > 3.94 ∨ sum_duration_2 > 170 (R2 = 0.4232)

just barely significant.

Åstrand test So far, we have been focussing on the performance at competitions.
The LottoNL-Jumbo data also contains physical test results, of which we present one
example here. One of the standard ways of assessing an athlete’s general fitness is
called the Åstrand test (Åstrand and Ryhming 1954). It measures the aerobic capacity
in terms of a standard value called VO2max (Kenney et al. 2015;McArdle et al. 2014),
and is of relevance to disciplines that require prolonged expenditure of energy. The data
we analyse here contains 146 examples of measurements of this value for a specific
male skater, nearly twice as many as the number of competition results available for
this skater. The average VO2max for this skater is 59.95 ml/kg/min (higher values
indicate better fitness) with a standard deviation of σ = 4.05. Subgroup Discovery
turns out to produce better results than simple linear models, so we focus on that
approach.

At depth d = 1, the best performing feature (ignoring specifiers), is

max_duration_21

(the length of the longest session over a 3-week period). When this value is above
130min, the VO2max is elevated to 61.085 (R2 = 0.202). The fact that duration plays
a key role here makes sense: the aerobic system is primarily trained with exercises that
last long (as opposed to say sprints or weight training). The fact that the maximum
value is apparently relevant is interesting, since it suggests that relatively long sessions
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are required, but a single such session may be sufficient. With the same set of features,
the following d = 3 subgroup raises this value to 62.514 (R2 = 0.322):

max_duration_17 ≥ 140∧
count_15 ≤ 88∧

max_load_21 ≤ 1250

Furthermore, with the addition of specifiers (ampm and intensity intervals), the fol-
lowing subgroup scored best at d ≤ 3:

max_duration_int123_17 ≥ 110∧
sum_duration_int456_7 ≤ 1975∧
sum_duration_int7_15 ≤ 311.0

This subgroup, which covers 65 tests (vs. 81 tests in the complement), represents
an average of 62.84 (R2 = 0.408). It combines a minimum duration for the longest
low-intensity exercise with two upper bounds on the total duration of high-intensity
exercises. All Åstrand results presented here are significant at the α = 0.05 level, with
considerable margin.

5.2 Fitness-Fatigue model

In this section, we analyse the specific merits of the Fitness-Fatigue model introduced
in Sect. 3.2.We start by considering the four parameters themodel involves, in order to
fit the kernel to the specific physiological properties of the individual athlete. Rough
values for the optimal setting were determined by informal experimentation, after
which an extensive grid search was used to determine the optimal values for each
athlete involved. These results are demonstrated in Table 4, for four athletes and their
respective distance of speciality. The left columns indicate the gender of the athlete,
the preferred distance, the average relative time, and the number of races n available.
The remaining columns indicate the optimal values for τ f i t , τdel , τ f at and K . The
three decay parameters are in days. As an optimisation criterion, we select the R2 of
the (univariate) linear model of the best feature found.

In order to analyse the stability of these parameters, we selected the third athlete (the
one with the most available data), and varied each parameter individually, fixing the
remaining the parameters to the optimum found earlier. The R2 of the best feature was
recorded for each setting of the parameters. Figure 5 demonstrates for each parameter
how sensitive it is to change, in terms of quality of fit of the FF model. We note
that all functions are very well-behaved and smooth over the domains considered,
with the selected optimum clearly being undisputed. Furthermore, observe that the
functions appear to be convex, making them fairly straightforward to optimise. Hence,
the relatively simple grid search used in the pragmatic setting can be easily replaced
by a more efficient hill-climber.
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Table 4 Optimal parameters for the Fitness-Fatigue model for four speed skaters

Input context Optimal parameters

Gender Distance (m) Time n τ f i t τdel τ f at K

M1 Male 1000 1.0207 75 13 2.0 2.0 2.00

M2 Male 500 1.0212 142 21 2.0 2.0 3.75

F1 Female 1500 1.0391 60 39 4.0 7.0 2.00

F2 Female 500 1.0691 22 29 4.0 4.0 2.00

Fig. 5 Analysis of sensitivity of the features to varying the four parameters τ f i t , τdel , τ f at and K (from
top left to bottom right). Clearly, these functions are smooth and well-behaved

Let’s consider the table of FF parameters in more detail. First of all, the rough
numbers are very plausible from a physiological point of view. Clearly, the fatigue
and (delayed) gain in fitness should be in the order of a few days, while the prolonged
benefit of the exercise remains for a longer period in the order of several weeks. Also,
the optimal values clearly differ per athlete, as a functionof the different physiology and
type of training the athlete is subjected to generally. Table 4 also suggests a difference
between men and women, with men having a shorter time scale than women, both for
the recuperation and how long the benefit lasts, although such conclusions are hard
to draw from only four cases. Note also that the values reported here are somewhat
different from the ones reported in Calvert et al. (1976), which are: τ f i t = 50, τdel =
5, τ f at = 15, K = 2.0. As a last observation, we note that τdel and τ f at tend to
assume very similar values. What impact this has from a physiological perspective
(the fatigue and beneficial adaptation of the body go hand in hand?) is hard to say, but

123



1894 A. Knobbe et al.

Table 5 Comparison of goodness of fit of best univariate linear model for (middle) the uniform aggregates
and (right) the Fitness-Fatigue model

Gender Distance (m) Uniform Fitness-Fatigue

R2 linear p value R2 linear p value

M1 Male 1000 0.41 4.16 × 10−10 0.30 3.85 × 10−7

M2 Male 500 0.17 2.46 × 10−7 0.23 7.02 × 10−10

F1 Female 1500 0.06 9.95 × 10−3 0.11 1.69 × 10−3

F2 Female 500 0.54 9.53 × 10−5 0.50 2.58 × 10−5

Bold values indicate the fit of the best model for each skater

at least from a modelling perspective, it is a good opportunity to dispense with one
parameter, and make the fitting of models more efficient.

Having a stable and physiologically plausible FF model of the training response,
it is now time to turn to the question whether the model indeed produces a better
fit, compared to our baseline of uniform aggregates. To this end, we again con-
sider the explained variance R2 of the linear model on the best feature found, first
for uniform features, then for the exponentially decaying features. Since above, the
FF model was optimised without specifiers (intensity zones and morning/afternoon
distinction), we compare the results with a similar setting for the uniform features.
Table 5 presents these results. The columns marked “R2 linear” indicate the explained
variance of the simple linear model. The indicated p values for each result refer to
the statistical significance of a linear regression t test: the significance of the best
model, testing the hypothesis that the coefficient of the model is not 0 (in other
words, testing whether the dependent variable is indeed influenced by the independent
variable).

Based on these numbers, there is clearly not a consistent benefit of the FF model,
over the less natural uniform features. Especially in the case of the first athlete, the
uniform features are in fact more accurate. The feature in question (although there are
multiple variants of similar score) concerns the sum of the duration over 9days, which
is an indication of too intense training and hence too high levels of fatigue as a result.
Also for the fourth athlete, the uniform features come out on top. Still, for individual
athletes the FF model may show a considerable improvement in fit over the unnatural
uniform features.

Alternative aggregate functions The presentation of the FFmodel in terms of convolu-
tion translates into SQL as the SUM aggregate function. If features based on SUM have
a potential benefit, so might the alternative functions AVG and MAX. We present an
additional experiment in Table 6 that investigates the added value of these two aggre-
gates to the plain implementation of the FF model used so far. The last two columns of
the table show that in two cases, AVG or MAX do outperform the standard convolution.
This is interesting, since there is clearly the potential to improve the models in this
way. However, the features are less intuitive to understand since they are not based on
the standard definition of convolution in terms of summation.
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Table 6 Analysis of the benefit of adding AVG and MAX as aggregates to the Fitness-Fatigue model

Gender Distance (m) SUM SUM, AVG, MAX

R2 linear p value R2 linear p value

M1 Male 1000 0.30 3.85 × 10−7 0.30 3.85 × 10−7

M2 Male 500 0.24 7.02 × 10−10 0.28 1.60 × 10−11

F1 Female 1500 0.11 1.69 × 10−3 0.15 5.22 × 10−4

F2 Female 500 0.50 2.58 × 10−5 0.50 2.58 × 10−5

Bold values indicate the fit of the best model for each skater

Table 7 The top six of a ranking of features, ordered by the R2 of the linear functions

Feature Linear function Step function

R2 p value R2 p value

sum_duration_int4567_9 0.56 1.207 × 10−14 0.52 3.974 × 10−13

sum_duration_int456_9 0.54 5.789 × 10−14 0.54 8.987 × 10−14

sum_duration_int456789_9 0.53 1.014 × 10−13 0.45 3.878 × 10−11

sum_duration_int4567_11 0.53 1.022 × 10−13 0.47 9.474 × 10−12

sum_duration_int45678_9 0.53 1.134 × 10−13 0.45 3.878 × 10−11

sum_duration_int34567_9 0.52 2.434 × 10−13 0.49 2.575 × 10−12

– – – – –

The second feature happens to be the optimal one for step functions (R2 = 0.5367). p values of the linear
functions are computed as before. The p value for step functions is obtained by performing a Student’s t
test Rice (2006) on the two samples (subgroup and complement), testing for significant difference between
the two means

Table 8 Comparison of best fit between linear models and step functions

Gender Distance (m) Linear function Step function

R2 p value R2 p value

M1 Male 1000 0.56 1.21 × 10−14 0.54 8.99 × 10−14

M2 Male 500 0.19 7.22 × 10−8 0.27 3.43 × 10−11

F1 Female 1500 0.19 1.83 × 10−4 0.31 2.63 × 10−5

F2 Female 500 0.58 4.28 × 10−5 0.59 3.69 × 10−5

Bold values indicate the fit of the best model for each skater

5.3 Comparing linear and step functions

So far, we have been focussing on aspects of feature construction. In this section, we
turn to the challenge of finding regression models within those features, that relate
each feature to the target. As discussed in Sect. 4, we consider both simple linear
models and step functions as univariate regression models. Thus, we would like to
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Fig. 6 Plot showing the roughly linear relationship between the R2 of simple linear functions and the step
function derived by Subgroup Discovery. Each dot represents a constructed feature and how predictive it is
for the target under two conditions: 1000m for a male speed skater (top), and 1500m for a female skater
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know which of these two approaches produces the best fit, and to what extent the
approaches rank similar features similarly. Consider the top six features (uniform
aggregation, including specifiers) in Table 7 in terms of R2 of the simple linear model,
for male skater M1. Column 2 and 4 show the explained variances, which are clearly
very correlated. In fact, the top feature for the step function happens to be the second
feature. This suggests that linear models and step functions are roughly as expressive
for this athlete.

Amore thorough analysis is given in the two plots of Fig. 6. Here, every feature con-
sidered is represented by a dot with the R2 of either model as the x- and y-coordinate.
A linear correlation, especially when close to the line y = x suggests that the two
models are equally strong. The first plot showsM1, the athlete with the best correlation
between the two fits (of the four athletes featured earlier), and the second F1, the ath-
lete where the correlation is the least. The rank correlation for the first two rankings is
ρ = 0.954, compared to ρ = 0.646 for the second. The interesting rules, where linear
models fail to fit the data while a step function is able to model the data to some extent,
appear on the left of these plots. Interestingly, there are some features that score near
zero for the explained linear variance, while still showing some form of dependence
using the step function. In Table 8, the R2 of the best features are listed for each of
the athletes. As is clear, in three of the four cases, step functions outperform the linear
models, making them a very viable solution to model such data.

6 Conclusion

We have presented a general approach to the modelling of training data in elite sports,
with a specific application to speed skating in the LottoNL-Jumbo team. Our approach
computes the combined effect of a training schedule by aggregating details of the
individual training sessions, and thus capturing a considerable number of aspects of
training and how one prepares for important test moments, such as physical tests and
races. Since it is not entirely clear from the literaturewhat aspects of training contribute
the most, and what parameters individual athletes need to tweak in order to optimise
the training to their specific physique and specialisation, we produce a reasonably
large collection of promising features. The most relevant features are then selected by
a number of techniques, specifically univariate linear regression, the LASSO regres-
sion process and Subgroup Discovery. The linear modelling methods assume that the
dependencies of interest are indeed monotonic and linear, that is, adding more load
to the exercise will increase the (long-term) fitness of the athlete’s body. Clearly, this
is not generally the case, and one would expect there to be certain thresholds, above
which training is no longer beneficial. For each aspect of training, there is an optimal
volume, above or below which training is ineffective. This suggests that non-linear
models, or models that are able to represent thresholds (such as subgroups) will out-
perform linear models.

As mentioned in our introduction, we aim to discover interpretable and actionable
patterns in the data, such that the coach can immediately incorporate the most sig-
nificant findings in the preparation for upcoming events, as well as in future training
schedules. We believe that our presented approach, that deliberately presents simple
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results, and gives clear guidelines and boundaries on training load,makes this possible.
In fact, individual findings on the athletes of the team have led to (subtle) modifica-
tions in training regimens, most notably where sprinters were sometimes subjected to
too much aerobic exercise. It is good to stress again the athlete-specific nature of our
analyses. Luckily, for a reasonable number of skaters, we have a long enough history
to have a substantial database of training-response examples, where natural variation
in preparation has produced a productive dataset. Athlete-specific data leads to athlete-
specific findings, and one should therefore not interpret any discovered pattern as a
general rule of exercise physiology, but rather as an opportunity to optimise training
for that athlete.

We have presented a number of anecdotal results for a specific skater, demonstrat-
ing that interpretable and actionable results can be found. The best-fitting subgroup
suggests that for a good result, this skater should avoid longer exercises at intensity 5
(over a longer window), as well as (slightly) increase the exposure to intensities 6 to
9. Although separate results appear very significant, a more thorough analysis using
swap-randomisation is necessary to account for the many features and models being
considered. For this specific skater, statistically significant results could be obtained,
despite there only being 60 available races. With up to 142 race results, other skaters
will allow for much more significant findings.

The Fitness-Fatigue model, introduced as a more natural way to aggregate train-
ing impulses over time, produced reasonable results. After experimenting with four
different skaters, two male and two female, very consistent and realistic values were
found for the four parameters of this model. Although slight variations did occur, most
notably between the male and female skaters, the general picture did match that of
the coach. Knowing these (athlete-specific) parameters in detail allows the coach to
mix exercise and recuperation in a more precise manner. From a modelling point of
view, we also demonstrated that the optimal values of these parameters can be found
efficiently, due to their well-behaved nature.

In a number of detailed experiments, we compared different choices in our
modelling approach. A first experiment compared the uniform window to the Fitness-
Fatigue kernel. Given the unnatural nature of a rectangular kernel, one would expect
the FF model to be superior. Somewhat surprisingly, our data did not support this
hypothesis. The FF model did indeed produce superior models for two athletes, but
the uniform window performed equally superior on the remaining two, leaving this
comparison unresolved.

A further experiment considered whether using the aggregate functions MAX and
AVG, alongside the more obvious SUM, would be beneficial. This was indeed some-
times the case, although not by a large margin. Whether such slightly more accurate
models are in fact attractive is questionable, since the combination with the non-trivial
FF kernel does not lead to very interpretable patterns.

Finally, a head-to-head comparison between linear models and step functions was
performed. It turned out that in three of the four athletes considered, there is a clear
preference for step functions, with explained variance being almost twice as high in
one case. This suggests that in these datasets, there are indeed thresholds, above or
below which the performance is significantly compromised. Still, we observed that
the explained variances between linear and step function are fairly correlated, when
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considering all available features. Especially for the one athlete where step functions
showed no benefit, the explained variances were very similar, suggesting that the data
in question was actually fairly linear. Although in the training domain, one would
always expect a U-shaped relation between load and relative time (neither too much
nor too little is optimal), this is not necessarily reflected in the data of an athlete’s
practice. For example, if one consistently trains above the optimal load or intensity,
not all parts of the U-curve are being sampled, and available data might appear to be
fairly linear or at least monotonic. For at least three skaters in the team, the variance
in the training data is sufficient to exhibit the non-linear behaviour that is captured by
Subgroup Discovery.We intend to consider more complicated models that specifically
aim to capture the non-linear, U-shaped relationships one expects in training data.

The current distribution of relative times (see Fig. 1) generally shows a bell-shaped
curve, although the curve has some properties of a long tail on the right. This long tail
represents higher race results, where perhaps the athlete made a mistake or gave up
altogether. In order to accommodate for this lack of symmetry in the distribution, we
could consider alternative distributions such as the log-normal orWeibull distributions.
Such distributions are studied in detail in Survival Analysis (Hosmer et al. 2008), and
in future work, we will see if more accurate modelling of this asymmetry can be
obtained from inspiration from this field.

Further plans for future research in this field include the idea of analysing data
from multiple athletes simultaneously, whether this includes athletes of comparable
distances or simply taking data of all athletes available. Developments in the field
of multi-task learning (Caruana 1997) could be relevant here. One of the biggest
limitations in the analyses so far is the lack of sufficient races for a given athlete
and distance. For several athletes in the team, this prevents us from getting significant
results.With a combined approach, a generalmodel could be produced on considerably
more data, that then needs to be tailored to the individual athlete’s situation.
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Appendix A: Aggregation features in SQL

One of the ways in which the feature construction discussed in Sect. 3.1 can be per-
formed in relational databases is by means of a database view. The below statement
assumes there are two tables, one listing all results of races (Result), and one listing
all exercises (Exercise). There is an implicit one-to-many relationship between
these two tables, if one assumes that all exercises prior to a race provide information
as to the preparation for a race. In order to put a limit on the extent of history that is
included for each race (in this case, 4weeks), there is a

DATEDIFF(Result.date, Exercise.date) < 28
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condition in the where clause, combined with a
Exercise.date < Result.date

condition to guarantee only involving exercises prior to the race. Since there is a one-
to-many relationship, and we are interested in an analysis on the Result level, we need
to aggregate themany exercises bymeans of aggregate functions. The statement below
demonstrates five such aggregates, four of which include attributes of the exercise.
Note the intensional definition of load as the product of duration and intensity.

CREATE VIEW RaceView AS
SELECT Result.id, Result.athlete_id,

COUNT(*) AS count_28,
SUM(Exercise.duration) AS sum_duration_28,
SUM(Exercise.intensity) AS sum_intensity_28,
SUM(Exercise.duration*Exercise.intensity) AS sum_load_28,
AVG(Exercise.duration) AS avg_duration_28,
...

FROM Result, Exercise
WHERE Exercise.athlete_id = Result.athlete_id AND

Exercise.date < Result.date AND
DATEDIFF(Result.date, Exercise.date) < 28 AND

GROUP BY Result.id, Result.athlete_id;

The outline below shows features related to the largest window selected, in this case
28days. Since nowindows longer than28days are presented to the aggregate functions,
no specification of this limit is required. However, the majority of features will involve
shorter windows, so for such definitions, the below examples demonstrate how to limit
the number of exercises involved to the appropriate window. These four aggregates
are the 2-week counterparts of the ones in the above statement. Note the two different
values in the then-else clause that depend on the type of aggregate function. For
COUNT, this needs to be1 (inside the 2-weekwindow) andNULL (outside thewindow).
For SUM and MAX, this needs to be the attribute in question, and 0. Finally, for AVG,
this needs to be the attribute and NULL.

COUNT(CASE WHEN DATEDIFF(Result.date, Exercise.date) <= 14
THEN 1 ELSE NULL END) AS count_14,

SUM(CASE WHEN DATEDIFF(Result.date, Exercise.date) <= 14
THEN Exercise.duration ELSE 0 END) AS sum_duration_14,

AVG(CASE WHEN DATEDIFF(Result.date, Exercise.date) <= 14
THEN Exercise.duration ELSE NULL END) AS avg_duration_14,

MAX(CASE WHEN DATEDIFF(Result.date, Exercise.date) <= 14
THEN Exercise.duration ELSE 0 END) AS sum_duration_14,

Whenever a specifier is involved in the aggregate, this can be specified with a case-
when-then-else clause as well, as demonstrated below:

SUM(CASE WHEN Exercise.session = "am" THEN Exercise.duration ELSE 0 END)
AS sum_duration_am_28,

SUM(CASE WHEN Exercise.intensity >= 4 AND Exercise.intensity <= 6
THEN Exercise.duration ELSE 0 END) AS sum_int456_28,

Appendix B: Fitness-fatigue in SQL

In Sect. 3.1.2, we observed that uniform aggregation using sum could be interpreted
as convolution with a rectangular kernel, making the implementation in SQL fairly
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straightforward. With some minor changes, this also holds for our more sophisticated
Fitness-Fatigue kernel. The following aggregate computes the desired feature for the
FF kernel, with four parameters supplied.

SUM(((EXP(-DATEDIFF(Result.date, Exercise.date)*(1/50)) -
EXP(-DATEDIFF(Result.date, Exercise.date)*(1/5))) -

2*EXP(-DATEDIFF(Result.date, Exercise.date)*(1/15))) * Exercise.duration)
AS FF_duration_50,

Note how this aggregate uses the elapsed time (DATEDIFF) between the exercise
and the competition as the value m in the kernel h f f . Since the kernel asymptotically
approaches 0 with increasing time, there should not be a limit on the time between
exercise and competition, as is the case with the uniform window (28days). However,
in practical implementations, one can opt for approximate features by limiting the
history of each competition, thus gaining efficiency.
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