180 research outputs found

    Class reconstruction driven adversarial domain adaptation for hyperspectral image classification

    Get PDF
    We address the problem of cross-domain classification of hyperspectral image (HSI) pairs under the notion of unsupervised domain adaptation (UDA). The UDA problem aims at classifying the test samples of a target domain by exploiting the labeled training samples from a related but different source domain. In this respect, the use of adversarial training driven domain classifiers is popular which seeks to learn a shared feature space for both the domains. However, such a formalism apparently fails to ensure the (i) discriminativeness, and (ii) non-redundancy of the learned space. In general, the feature space learned by domain classifier does not convey any meaningful insight regarding the data. On the other hand, we are interested in constraining the space which is deemed to be simultaneously discriminative and reconstructive at the class-scale. In particular, the reconstructive constraint enables the learning of category-specific meaningful feature abstractions and UDA in such a latent space is expected to better associate the domains. On the other hand, we consider an orthogonality constraint to ensure non-redundancy of the learned space. Experimental results obtained on benchmark HSI datasets (Botswana and Pavia) confirm the efficacy of the proposal approach

    Multitemporal Very High Resolution from Space: Outcome of the 2016 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, the scientific outcomes of the 2016 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society are discussed. The 2016 Contest was an open topic competition based on a multitemporal and multimodal dataset, which included a temporal pair of very high resolution panchromatic and multispectral Deimos-2 images and a video captured by the Iris camera on-board the International Space Station. The problems addressed and the techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and mixed ideas and methodologies from the remote sensing, video processing, and computer vision. In particular, the winning team developed a deep learning method to jointly address spatial scene labeling and temporal activity modeling using the available image and video data. The second place team proposed a random field model to simultaneously perform coregistration of multitemporal data, semantic segmentation, and change detection. The methodological key ideas of both these approaches and the main results of the corresponding experimental validation are discussed in this paper

    Open Data for Global Multimodal Land Use Classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest

    Get PDF
    In this paper, we present the scientific outcomes of the 2017 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2017 Contest was aimed at addressing the problem of local climate zones classification based on a multitemporal and multimodal dataset, including image (Landsat 8 and Sentinel-2) and vector data (from OpenStreetMap). The competition, based on separate geographical locations for the training and testing of the proposed solution, aimed at models that were accurate (assessed by accuracy metrics on an undisclosed reference for the test cities), general (assessed by spreading the test cities across the globe), and computationally feasible (assessed by having a test phase of limited time). The techniques proposed by the participants to the Contest spanned across a rather broad range of topics, and of mixed ideas and methodologies deriving from computer vision and machine learning but also deeply rooted in the specificities of remote sensing. In particular, rigorous atmospheric correction, the use of multidate images, and the use of ensemble methods fusing results obtained from different data sources/time instants made the difference

    CHANGE DETECTION BETWEEN DIGITAL SURFACE MODELS FROM AIRBORNE LASER SCANNING AND DENSE IMAGE MATCHING USING CONVOLUTIONAL NEURAL NETWORKS

    Get PDF
    Airborne photogrammetry and airborne laser scanning are two commonly used technologies used for topographical data acquisition at the city level. Change detection between airborne laser scanning data and photogrammetric data is challenging since the two point clouds show different characteristics. After comparing the two types of point clouds, this paper proposes a feed-forward Convolutional Neural Network (CNN) to detect building changes between them. The motivation from an application point of view is that the multimodal point clouds might be available for different epochs. Our method contains three steps: First, the point clouds and orthoimages are converted to raster images. Second, square patches are cropped from raster images and then fed into CNN for change detection. Finally, the original change map is post-processed with a simple connected component analysis. Experimental results show that the patch-based recall rate reaches 0.8146 and the precision rate reaches 0.7632. Object-based evaluation shows that 74 out of 86 building changes are correctly detected

    Mapping drivers of tropical forest loss with satellite image time series and machine learning

    Get PDF
    The rates of tropical deforestation remain high, resulting in carbon emissions, biodiversity loss, and impacts on local communities. To design effective policies to tackle this, it is necessary to know what the drivers behind deforestation are. Since drivers vary in space and time, producing accurate spatially explicit maps with regular temporal updates is essential. Drivers can be recognized from satellite imagery but the scale of tropical deforestation makes it unfeasible to do so manually. Machine learning opens up possibilities for automating and scaling up this process. In this study, we developed and trained a deep learning model to classify the drivers of any forest loss—including deforestation—from satellite image time series. Our model architecture allows understanding of how the input time series is used to make a prediction, showing the model learns different patterns for recognizing each driver and highlighting the need for temporal data. We used our model to classify over 588 ′ 000 sites to produce a map detailing the drivers behind tropical forest loss. The results confirm that the majority of it is driven by agriculture, but also show significant regional differences. Such data is a crucial source of information to enable targeting specific drivers locally and can be updated in the future using free satellite data

    Towards Estimation of 3D Poses and Shapes of Animals from Oblique Drone Imagery

    Get PDF
    Wildlife research in both terrestrial and aquatic ecosystems now deploys drone technology for tasks such as monitoring, census counts and habitat analysis. Unlike camera traps, drones offer real-time flexibility for adaptable flight paths and camera views, thus making them ideal for capturing multi-view data on wildlife like zebras or lions. With recent advancements in animals’ 3D shape & pose estimation, there is an increasing interest in bringing 3D analysis from ground to sky by means of drones. The paper reports some activities of the EU-funded WildDrone project and performs, for the first time, 3D analyses of animals exploiting oblique drone imagery. Using parametric model fitting, we estimate 3D shape and pose of animals from frames of a monocular RGB video. With the goal of appending metric information to parametric animal models using photogrammetric evidence, we propose a pipeline where we perform a point cloud reconstruction of the scene to scale and localize the animal within the 3D scene. Challenges, planned next steps and future directions are also reported

    Perspectives in machine learning for wildlife conservation

    Get PDF
    Data acquisition in animal ecology is rapidly accelerating due to inexpensive and accessible sensors such as smartphones, drones, satellites, audio recorders and bio-logging devices. These new technologies and the data they generate hold great potential for large-scale environmental monitoring and understanding, but are limited by current data processing approaches which are inefficient in how they ingest, digest, and distill data into relevant information. We argue that machine learning, and especially deep learning approaches, can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species. Incorporating machine learning into ecological workflows could improve inputs for population and behavior models and eventually lead to integrated hybrid modeling tools, with ecological models acting as constraints for machine learning models and the latter providing data-supported insights. In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies in order to reliably estimate population abundances, study animal behavior and mitigate human/wildlife conflicts. To succeed, this approach will require close collaboration and cross-disciplinary education between the computer science and animal ecology communities in order to ensure the quality of machine learning approaches and train a new generation of data scientists in ecology and conservation

    Deep Learning Techniques for Geospatial Data Analysis

    Full text link
    Consumer electronic devices such as mobile handsets, goods tagged with RFID labels, location and position sensors are continuously generating a vast amount of location enriched data called geospatial data. Conventionally such geospatial data is used for military applications. In recent times, many useful civilian applications have been designed and deployed around such geospatial data. For example, a recommendation system to suggest restaurants or places of attraction to a tourist visiting a particular locality. At the same time, civic bodies are harnessing geospatial data generated through remote sensing devices to provide better services to citizens such as traffic monitoring, pothole identification, and weather reporting. Typically such applications are leveraged upon non-hierarchical machine learning techniques such as Naive-Bayes Classifiers, Support Vector Machines, and decision trees. Recent advances in the field of deep-learning showed that Neural Network-based techniques outperform conventional techniques and provide effective solutions for many geospatial data analysis tasks such as object recognition, image classification, and scene understanding. The chapter presents a survey on the current state of the applications of deep learning techniques for analyzing geospatial data. The chapter is organized as below: (i) A brief overview of deep learning algorithms. (ii)Geospatial Analysis: a Data Science Perspective (iii) Deep-learning techniques for Remote Sensing data analytics tasks (iv) Deep-learning techniques for GPS data analytics(iv) Deep-learning techniques for RFID data analytics.Comment: This is a pre-print of the following chapter: Arvind W. Kiwelekar, Geetanjali S. Mahamunkar, Laxman D. Netak, Valmik B Nikam, {\em Deep Learning Techniques for Geospatial Data Analysis}, published in {\bf Machine Learning Paradigms}, edited by George A. TsihrintzisLakhmi C. Jain, 2020, publisher Springer, Cham reproduced with permission of publisher Springer, Cha

    Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott)

    Get PDF
    Clonally propagated crop species are less adaptable to environmental changes than those propagating sexually. DNA studies have shown that in all countries where taro (Colocasia esculenta (L.) Schott) has been introduced clonally its genetic base is narrow. As genetic variation is the most important source of adaptive potential, it appears interesting to attempt to increase genetic and phenotypic diversity to strengthen smallholders’ capacity to adapt to climatic changes. A global experiment, involving 14 countries from America, Africa, Asia and the Pacific was conducted to test this approach. Every country received a set of 50 indexed genotypes in vitro assembling significant genetic diversity. After onstation agronomic evaluation trials, the best genotypes were distributed to farmers for participatory on-farm evaluation. Results indicated that hybrids tolerant to taro leaf blight (TLB, Phytophthora colocasiae Raciborski), developed by Hawaii, Papua New Guinea and Samoa breeding programmes outperformed local cultivars in most locations. However, several elite cultivars from SE Asia, also tolerant to TLB, outperformed improved hybrids in four countries and in one country none of the introductions performed better than the local cultivars. Introduced genotypes were successfully crossed (controlled crossing) with local cultivars and new hybrids were produced. For the first time in the history of Aroids research, seeds were exchanged internationally injecting tremendous allelic diversity in different countries. If climatic changes are going to cause the problems envisaged, then breeding crops with wide genetic diversity appears to be an appropriate approach to overcome the disasters that will otherwise ensue.This research was financially supported by the Europe-Aid project ‘‘Adapting clonally propagated crops to climatic and commercial changes’’ (Grant No. DCI-FOOD/ 2010/230-267 SPC). Thanks are due to the 14 different countries technicians working on research stations and to farmers and their families for their enthusiastic contributioninfo:eu-repo/semantics/publishedVersio
    • …
    corecore