350 research outputs found

    Effects of Sorafenib on Intra-Tumoral Interstitial Fluid Pressure and Circulating Biomarkers in Patients with Refractory Sarcomas (NCI Protocol 6948)

    Get PDF
    Purpose: Jain Sorafenib is a multi-targeted tyrosine kinase inhibitor with therapeutic efficacy in several malignancies. Sorafenib may exert its anti-neoplastic effect in part by altering vascular permeability and reducing intra-tumoral interstitial hypertension. As correlative science with a phase II study in patients with advanced soft-tissue sarcomas (STS), we evaluated the impact of this agent on intra-tumor interstitial fluid pressure (IFP), serum circulating biomarkers, and vascular density. Patients and Methods: Patients with advanced STS with measurable disease and at least one superficial lesion amenable to biopsy received sorafenib 400 mg twice daily. Intratumoral IFP and plasma and circulating cell biomarkers were measured before and after 1–2 months of sorafenib administration. Results were analyzed in the context of the primary clinical endpoint of time-to-progression (TTP). Results: In 15 patients accrued, the median TTP was 45 days (range 14–228). Intra-tumoral IFP measurements obtained in 6 patients at baseline showed a direct correlation with tumor size. Two patients with stable disease at two months had post-sorafenib IFP evaluations and demonstrated a decline in IFP and vascular density. Sorafenib significantly increased plasma VEGF, PlGF, and SDF1α\alpha and decreased sVEGFR-2 levels. Increased plasma SDF1α\alpha and decreased sVEGFR-2 levels on day 28 correlated with disease progression. Conclusions: Pretreatment intra-tumoral IFP correlated with tumor size and decreased in two evaluable patients with SD on sorafenib. Sorafenib also induced changes in circulating biomarkers consistent with expected VEGF pathway blockade, despite the lack of more striking clinical activity in this small series

    Systematic Analysis of Circulating Soluble Angiogenesis-Associated Proteins in ICON7 Identifies Tie2 as a Biomarker of Vascular Progression on Bevacizumab

    Get PDF
    background: There is a critical need for predictive/resistance biomarkers for VEGF inhibitors to optimise their use. methods: Blood samples were collected during and following treatment and, where appropriate, upon progression from ovarian cancer patients in ICON7, a randomised phase III trial of carboplatin and paclitaxel with or without bevacizumab. Plasma concentrations of 15 circulating angio-biomarkers were measured using a validated multiplex ELISA, analysed through a novel network analysis and their relevance to the PFS then determined. results: Samples (n=650) were analysed from 92 patients. Bevacizumab induced correlative relationships between Ang1 and Tie2 plasma concentrations, which reduced after initiation of treatment and remained decreased until progressive disease occurred. A 50% increase from the nadir in the concentration of circulating Tie2 (or the product of circulating Ang1 and Tie2) predicted tumour progression. Combining Tie2 with GCIG-defined Ca125 data yielded a significant improvement in the prediction of progressive disease in patients receiving bevacizumab in comparison with Ca125 alone (74.1% vs 47.3%, P<1 × 10−9). conclusions: Tie2 is a vascular progression marker for bevacizumab-treated ovarian cancer patients. Tie2 in combination with Ca125 provides superior information to clinicians on progressive disease in patients with VEGFi-treated ovarian cancers

    Multimodality Imaging of Abnormal Vascular Perfusion and Morphology in Preclinical 9L Gliosarcoma Model

    Get PDF
    This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65 ± .13) as compared to the fifth day during treatment (1.26 ±.19, p < 0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89 ±.13, 1.00 ± .21, 1.13 ± .23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32 ± 2.34 branches/mm(3), p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29 ± 3.51 branches/mm(3)). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45 ± 1.36 µm(2)) as compared to saline treated tumor regions (30.83 ± 4.31 µm(2), p<0.001) and non-tumor regions (22.80 ± 1.11 µm(2), p<0.01).Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment

    Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner

    Get PDF
    The blood vessels of cancerous tumours are leaky and poorly organized. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery. Anti-angiogenic therapies—which ‘normalize’ the abnormal blood vessels in tumours by making them less leaky—have been shown to improve the delivery and effectiveness of chemotherapeutics with low molecular weights, but it remains unclear whether normalizing tumour vessels can improve the delivery of nanomedicines. Here, we show that repairing the abnormal vessels in mammary tumours, by blocking vascular endothelial growth factor receptor-2, improves the delivery of smaller nanoparticles (diameter, 12 nm) while hindering the delivery of larger nanoparticles (diameter, 125 nm). Using a mathematical model, we show that reducing the sizes of pores in the walls of vessels through normalization decreases the interstitial fluid pressure in tumours, thus allowing small nanoparticles to enter them more rapidly. However, increased steric and hydrodynamic hindrances, also associated with smaller pores, make it more difficult for large nanoparticles to enter tumours. Our results further suggest that smaller (~12 nm) nanomedicines are ideal for cancer therapy due to their superior tumour penetration.ImClone Systems IncorporatedNational Institutes of Health (U.S.) (P01-CA080124)National Institutes of Health (U.S.) (R01-CA126642)National Institutes of Health (U.S.) (R01-CA115767)National Institutes of Health (U.S.) (R01-CA096915)National Institutes of Health (U.S.) (R01-CA085140)National Institutes of Health (U.S.) (R01-CA098706)National Institutes of Health (U.S.) (T32-CA073479)United States. Dept. of Defense (Breast Cancer Research Innovator Award W81XWH-10-1-0016

    Development of Second-Generation VEGFR Tyrosine Kinase Inhibitors: Current Status

    Get PDF
    The vascular endothelial growth factor (VEGF) signaling pathway appears to be the dominant pathway involved in tumor angiogenesis, providing a rationale for targeting the VEGF receptors (VEGFR-1, -2, and -3) in the treatment of cancers. In particular, VEGF signaling is thought to be important in renal cell carcinoma (RCC) because of the deregulation of the pathway through nearly uniform loss of the von Hippel Lindau protein. The tyrosine kinase inhibitors (TKIs) sorafenib, sunitinib, and pazopanib are approved by the US Food and Drug Administration for the treatment of advanced RCC; however, these multitargeted agents inhibit a wide range of kinase targets in addition to the VEGFRs, resulting in a range of adverse effects unrelated to efficient VEGF blockade. This article reviews recent advances in the development of the second-generation VEGFR TKIs, including the more selective VEGFR TKIs tivozanib and axitinib, and focuses on the potential benefits of novel inhibitors with improved potency and selectivity

    Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dose of corticosteroids has been previously shown to protect against controlled mechanical ventilation (CMV)-induced diaphragmatic dysfunction while inhibiting calpain activation. Because literature suggests that the calpain inhibiting effect of corticosteroid depends on the dose administered, we determined whether lower doses of corticosteroids would also provide protection of the diaphragm during CMV. This may be important for patients undergoing mechanical ventilation and receiving corticosteroids.</p> <p>Methods</p> <p>Rats were assigned to controls or to 24 hours of CMV while being treated at the start of mechanical ventilation with a single intramuscular administration of either saline, or 5 mg/kg (low MP) or 30 mg/kg (high MP) of methylprednisolone.</p> <p>Results</p> <p>Diaphragmatic force was decreased after CMV and this was exacerbated in the low MP group while high MP rescued this diaphragmatic dysfunction. Atrophy was more severe in the low MP group than after CMV while no atrophy was observed in the high MP group. A significant and similar increase in calpain activity was observed in both the low MP and CMV groups whereas the high dose prevented calpain activation. Expression of calpastatin, the endogenous inhibitor of calpain, was decreased in the CMV and low MP groups but its level was preserved to controls in the high MP group. Caspase-3 activity increased in all CMV groups but to a lesser extent in the low and high MP groups. The 20S proteasome activity was increased in CMV only.</p> <p>Conclusions</p> <p>Administration of 30 mg/kg methylprednisolone during CMV protected against CMV-induced diaphragm dysfunction while 5 mg/kg was more deleterious. The protective effect is due mainly to an inhibition of the calpain system through preservation of calpastatin levels and to a lesser extent to a caspase-3 inhibition.</p

    Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma

    Get PDF
    BACKGROUND: We previously identified brain type fatty acid-binding protein (FABP7) as a prognostic marker for patients with glioblastoma (GBM). Increased expression of FABP7 is associated with reduced survival. To investigate possible molecular mechanisms underlying this association, we compared the expression and subcellular localization of FABP7 in non-tumor brain tissues with different types of glioma, and examined the expression of FABP7 and epidermal growth factor receptor (EGFR) in GBM tumors. METHODS: Expression of FABP7 in non-tumor brain and glioma specimens was examined using immunohistochemistry, and its correlation to the clinical behavior of the tumors was analyzed. We also analyzed the association between FABP7 and EGFR expression in different sets of GBM specimens using published DNA microarray datasets and semi-quantitative immunohistochemistry. In vitro migration was examined using SF763 glioma cell line. RESULTS: FABP7 was present in a unique population of glia in normal human brain, and its expression was increased in a subset of reactive astrocytes. FABP7 immunoreactivity in grade I pilocytic astrocytoma was predominantly cytoplasmic, whereas nuclear FABP7 was detected in other types of infiltrative glioma. Nuclear, not cytoplasmic, FABP7 immunoreactivity was associated with EGFR overexpression in GBM (N = 61, p = 0.008). Expression of the FABP7 gene in GBM also correlated with the abundance of EGFR mRNA in our previous microarray analyses (N = 34, p = 0.016) and an independent public microarray dataset (N = 28, p = 0.03). Compared to those negative for both markers, nuclear FABP7-positive/EGFR-positive and nuclear FABP7-positive/EGFR-negative GBM tumors demonstrated shortest survival, whereas those only positive for EGFR had intermediate survival. EGFR activation increased nuclear FABP7 immunoreactivity in a glioma cell line in vitro, and inhibition of FABP7 expression suppressed EGF-induced glioma-cell migration. Our data suggested that in EGFR-positive GBM the presence of nuclear FABP7 immunoreactivity increases the risk of poor prognosis CONCLUSION: In this study, we identified a possible mechanism as the basis of the association between nuclear FABP7 and poor prognosis of GBM. FABP7 expression can be found in all grades of astrocytoma, but neoplastic cells with nuclear FABP7 were only seen in infiltrative types of tumors. Nuclear FABP7 may be induced by EGFR activation to promote migration of GBM tumor cells. Positive nuclear FABP7 and EGFR overexpression correlated with short survival in EGFR-positive GBM patients. Therefore, nuclear FABP7 immunoreactivity could be used to monitor the progression of EGFR-overexpressed GBM

    Modeling the Basal Dynamics of P53 System

    Get PDF
    The tumor suppressor p53 has become one of most investigated genes. Once activated by stress, p53 leads to cellular responses such as cell cycle arrest and apoptosis.Most previous models have ignored the basal dynamics of p53 under nonstressed conditions. To explore the basal dynamics of p53, we constructed a stochastic delay model by incorporating two negative feedback loops. We found that protein distribution of p53 under nonstressed condition is highly skewed with a fraction of cells showing high p53 levels comparable to those observed under stressed conditions. Under nonstressed conditions, asynchronous and spontaneous p53 pulses are triggered by basal DNA double strand breaks produced during normal cell cycle progression. The first peaking times show a predominant G1 distribution while the second ones are more widely distributed. The spontaneous pulses are triggered by an excitable mechanism. Once initiated, the amplitude and duration of pulses remain unchanged. Furthermore, the spontaneous pulses are filtered by ataxia telangiectasia mutated protein mediated posttranslational modifications and do not result in substantial p21 transcription. If challenged by externally severe DNA damage, cells generate synchronous p53 pulses and induce significantly high levels of p21. The high expression of p21 can also be partially induced by lowering the deacetylation rate.Our results demonstrated that the dynamics of p53 under nonstressed conditions is initiated by an excitable mechanism and cells become fully responsive only when cells are confronted with severe damage. These findings advance our understanding of the mechanism of p53 pulses and unlock many opportunities to p53-based therapy
    corecore