2,728 research outputs found

    SGR 1806-20 Is a Set of Independent Relaxation Systems

    Get PDF
    The Soft Gamma Repeater 1806-20 produced patterns of bursts during its 1983 outburst that indicate multiple independent energy accumulation sites, each driven by a continuous power source, with sudden, incomplete releases of the accumulated energy. The strengths of the power sources and their durations of activity vary over several orders of magnitude.Comment: Accepted ApJLett, 15 pages, 3 figure

    Difference L operators and a Casorati determinant solution to the T-system for twisted quantum affine algebras

    Full text link
    We propose factorized difference operators L(u) associated with the twisted quantum affine algebras U_{q}(A^{(2)}_{2n}),U_{q}(A^{(2)}_{2n-1}), U_{q}(D^{(2)}_{n+1}),U_{q}(D^{(3)}_{4}). These operators are shown to be annihilated by a screening operator. Based on a basis of the solutions of the difference equation L(u)w(u)=0, we also construct a Casorati determinant solution to the T-system for U_{q}(A^{(2)}_{2n}),U_{q}(A^{(2)}_{2n-1}).Comment: 15 page

    Nonlinear integral equations for thermodynamics of the sl(r+1) Uimin-Sutherland model

    Full text link
    We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the ones from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIE). In particular, a subset of these NLIE forms a system of NLIE which contains only a finite number of unknown functions. For r=1, this subset of NLIE reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIE is clarified. Based on our new NLIE, we also calculate the high temperature expansion of the free energy.Comment: 24 pages, 4 figures, to appear in J. Phys. A: Math. Ge

    GGD 27: X-rays from a Massive Protostar with an Outflow

    Get PDF
    We report the discovery of a cluster of Class I protostars in GGD 27. One of these protostars is the previously known, centrally located, GGD 27-ILL, which powers a massive bipolar outflow. We show that GGD 27-ILL, which is known to be the bright infrared (IR) source, IRAS 18162-2048, and a compact radio continuum source, is also the newly discovered hard X-ray source, GGD 27-X. The observations were made with the ACIS instrument on the Chandra X-ray Observatory. The X-rays from GGD 27-X are variable when compared with 4 years earlier, with an unabsorbed 2-10 keV X-ray luminosity in this observation of 1.5-12 × 10^31 erg s^–1 and a plasma temperature of ≥ 10^7 K. The X-rays are probably associated with the underlying B0 star (rather than outflowing material), providing a rare glimpse in hard X-rays of an optically obscured massive protostar with an outflow. The X-ray luminosity and spectrum appear to be consistent with stars of its type in other star formation regions. Several other variable X-ray sources are also detected in the IR cluster that contains GGD 27-X. We also discuss another nearby cluster. In each of the clusters there is an object that is X-ray hard, highly absorbed at low energies, in a blank optical/IR/radio field, and variable in X-ray intensity by a factor of ≥ 10 on a timescale of 4 years. These latter objects may arise from more recent episodes of star formation or may be "hidden" Class III sources

    The Massive Star Forming Region Cygnus OB2. I. Chandra catalogue of association members

    Get PDF
    We present a catalogue of 1696 X-ray sources detected in the massive star forming region (SFR) Cygnus OB2 and extracted from two archival Chandra observations of the center of the region. A deep source extraction routine, exploiting the low background rates of Chandra observations was employed to maximize the number of sources extracted. Observations at other wavelengths were used to identify low count-rate sources and remove likely spurious sources. Monte Carlo simulations were also used to assess the authenticity of these sources. We used a Bayesian technique to identify optical or near-IR counterparts for 1501 (89%) of our sources, using deep observations from the INT Photometric H-alpha Survey, the Two Micron All Sky Survey, and the UKIRT Infrared Deep Sky Survey-Galactic plane Survey. 755 (45%) of these objects have six-band r', H-alpha, i', J, H, and K optical and near-IR photometry. From an analysis of the Poisson false-source probabilities for each source we estimate that our X-ray catalogue includes < 1% of false sources, and an even lower fraction when only sources with optical or near-IR associations are considered. A Monte Carlo simulation of the Bayesian matching scheme allows this method to be compared to more simplified matching techniques and enables the various sources of error to be quantified. The catalogue of 1696 objects presented here includes X-ray broad band fluxes, model fits, and optical and near-IR photometry in what is one of the largest X-ray catalogue of a single SFR to date. The high number of stellar X-ray sources detected from relatively shallow observations confirms the status and importance of Cygnus OB2 as one of our Galaxy's most massive SFRs.Comment: Accepted for publication in ApJS. 39 pages, 5 figures, 5 tables (full tables available in the published version or on request to the author

    Locally continuously perfect groups of homeomorphisms

    Full text link
    The notion of a locally continuously perfect group is introduced and studied. This notion generalizes locally smoothly perfect groups introduced by Haller and Teichmann. Next, we prove that the path connected identity component of the group of all homeomorphisms of a manifold is locally continuously perfect. The case of equivariant homeomorphism group and other examples are also considered.Comment: 14 page

    Hard X-ray emission from a young massive star-forming cluster

    Get PDF
    We report the detection of hard X-ray emission (>2 keV) from a number of point sources associated with the very young massive star-forming region IRAS 19410+2336. The X-ray emission is detected from several sources located around the central and most deeply embedded mm continuum source, which remains undetected in the X-ray regime. All X-ray sources have K-band counterparts, and those likely belonging to the evolving massive cluster show near-infrared colors in the 2MASS data indicative of pre-main-sequence stages. The X-ray luminosities around 10^{31} erg/s are at the upper end of luminosities known for low-mass pre-main-sequence sources, and mass estimates based on the infrared data indicate that at least some of the X-ray detected sources are intermediate-mass objects. Therefore, we conclude that the X-ray emission is due to intermediate-mass pre-main-sequence Herbig Ae/Be stars or their precursors. The emission process is possibly due to magnetic star-disk interaction as proposed for their low-mass counterparts.Comment: 10 pages, 5 figures, A&A accepte

    Nonlinear integral equations for the thermodynamics of the sl(4)-symmetric Uimin-Sutherland model

    Full text link
    We derive a finite set of nonlinear integral equations (NLIE) for the thermodynamics of the one-dimensional sl(4)-symmetric Uimin-Sutherland model. Our NLIE can be evaluated numerically for arbitrary finite temperature and chemical potentials. We recover the NLIE for sl(3) as a limiting case. In comparison to other recently derived NLIE, the evaluation at low temperature poses no problem in our formulation. The model shows a rich ground-state phase diagram. We obtain the critical fields from the T to zero limit of our NLIE. As an example for the application of the NLIE, we give numerical results for the SU(4) spin-orbital model. The magnetic susceptibility shows divergences at critical fields in the low-temperature limit and logarithmic singularities for zero magnetic field.Comment: 32 pages, 7 figures; references added, minor corrections, final versio

    Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*

    Full text link
    A point-like source of ~TeV gamma-rays has recently been seen towards the Galactic center by HESS and other air Cerenkov telescopes. In recent work (Ballantyne et al. 2007), we demonstrated that these gamma-rays can be attributed to high-energy protons that (i) are accelerated close to the event horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and (iii) finally interact to produce gamma-rays. The same hadronic collision processes will necessarily lead to the creation of electrons and positrons. Here we calculate the synchrotron emissivity of these secondary leptons in the same magnetic field configuration through which the initiating protons have been propagated in our model. We compare this emission with the observed ~GHz radio spectrum of the inner few pc region which we have assembled from archival data and new measurements we have made with the Australia Telescope Compact Array. We find that our model predicts secondary synchrotron emission with a steep slope consistent with the observations but with an overall normalization that is too large by a factor of ~ 2. If we further constrain our theoretical gamma-ray curve to obey the implicit EGRET upper limit on emission from this region we predict radio emission that is consistent with observations, i.e., the hadronic model of gamma ray emission can, simultaneously and without fine-tuning, also explain essentially all the diffuse radio emission detected from the inner few pc of the Galaxy.Comment: 11 pages, 2 figures. Two references missing from published version added and acknowledgements extende

    A Radio Polarimetric Study of the Galactic Center Threads

    Get PDF
    Multi-frequency, polarimetric VLA observations of the non-thermal filaments (NTF's), G0.08+0.15, and G359.96+0.09, also known as the Northern and Southern Threads are presented at 20, 6, 3.6 and 2 cm, with high enough spatial resolution to be resolved for the first time at 6 and 3.6 cm. The 20 cm image reveals a wealth of new detail in the radio sources lying within the inner 60 pc of the Galaxy. The Southern Thread has a prominent split along its length, similar to splitting at the ends of previously studied NTF's. With resolutions as fine as 2'', the 3.6 and 6 cm images reveal a high degree of continuity and little substructure internal to the filament. The spectral index of the Northern Thread has been determined over a broad range of frequencies. Its flux density falls with frequency, alpha=-0.5 between 90 and 6 cm, and becomes much steeper (alpha=-2.0) between 6 and 2 cm. The spectral index does not vary significantly along the length of the Northern Thread, which implies either that the diffusion timescale for the emitting electrons is less than their synchrotron lifetime, or that the emitting electrons are reaccelerated continuously at multiple positions along the filament. Because of the lack of spectral index variation, we have not located the source of relativistic electrons. Polarization observations at 6 and 3.6 cm confirm the non-thermal nature of the emission from the Northern Thread. The fractional polarization in the Northern Thread reaches 70% in some regions, although the polarized emission is patchy. Large rotation measures (RM > 2000 rad/m2) have been observed with irregular variations across the filament.The intrinsic magnetic field in the Northern Thread is predominantly aligned along its long axis.Comment: 19 pages, incl. 24 figs; to appear in the Astrophysical Journa
    corecore