152 research outputs found

    Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties

    Get PDF
    Lodging-related traits were evaluated on the CIMMYT Core spring wheat Germplasm Panel (CIMCOG) in the Yaqui Valley of North-West Mexico during three seasons (2010–2013). Genetic variation was significant for all the lodging-related traits in the cross-year analysis, however, significant G × E interaction due to rank changes or changes in the absolute differences between cultivars were identified. The inconsistences on cultivar performances across seasons particularly reduced the heritability of key characters related to root lodging resistance (anchorage strength). Target characters related to stem lodging resistance (stem strength) showed good heritability values equal or above 0.70. Positive correlations between stem strength and stem diameter and between root plate spread and root strength were found. Selecting for greater stem diameter and wall width, greater root plate spread and shorter plant height could enable breeders to increase lodging resistance by increasing stem strength, root strength and decreasing plant leverage, respectively. Achieving a lodging-proof crop will depend on finding a wider root plate spread and implementing new management strategies. Genetic linkages between lodging traits will not constrain the combination of the key lodging-trait dimensions to achieve a lodging-proof ideotype. However, strong association between stem strength and stem wall width will increase the total biomass cost needed for lodging resistance

    Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements

    Get PDF
    A model of the lodging process has been successfully adapted for use on spring wheat grown in North-West Mexico (NWM). The lodging model was used to estimate the lodging-associated traits required to enable spring wheat grown in NWM with a typical yield of 6 t ha−1 and plant height of 0.7 m to achieve a lodging return period of 25 years. Target traits included a root plate spread of 51 mm and stem strength of the bottom internode of 268 N mm. These target traits increased to 54.5 mm and 325 N mm, respectively, for a crop yielding 10 t ha−1. Analysis of multiple genotypes across three growing seasons enabled relationships between both stem strength and root plate spread with structural dry matter to be quantified. A NWM lodging resistant ideotype yielding 6 t ha−1 would require 3.93 t ha−1 of structural stem biomass and 1.10 t ha−1 of root biomass in the top 10 cm of soil, which would result in a harvest index (HI) of 0.46 after accounting for chaff and leaf biomass. A crop yielding 10 t ha−1 would achieve a HI of 0.54 for 0.7 m tall plants or 0.41 for more typical 1.0 m tall plants. This study indicates that for plant breeders to achieve both high yields and lodging-proofness they must either breed for greater total biomass or develop high yielding germplasm from shorter crops

    Cross-shell excitations in Si 31

    Get PDF
    The Si31 nucleus was produced through the O18(O18, αn) fusion-evaporation reaction at Elab=24MeV. Evaporated α particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple γ-ray coincidence events were detected in Gammasphere. The energy and angle information for the α particles was used to determine the Si31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new γ transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations in the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N=20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A≈20 nuclei and that previously adapted for P32,34. This variation suggests the need for a more universal cross-shell interaction

    Intruder configurations of excited states in the neutron-rich isotopes P 33 and P 34

    Get PDF
    Excited states in the neutron-rich isotopes P33 and P34 were populated by the O18+O18 fusion-evaporation reaction at Elab=24 MeV. The Gammasphere array was used along with the Microball particle detector array to detect γ transitions in coincidence with the charged particles emitted from the compound nucleus S36. The use of Microball enabled the selection of the proton emission channel. It also helped in determining the exact position and energy of the emitted proton; this was later employed in kinematic Doppler corrections. 16 new transitions and 13 new states were observed in P33 and 21 γ rays and 20 energy levels were observed in P34 for the first time. The nearly 4π geometry of Gammasphere allowed the measurement of γ-ray angular distributions leading to spin assignments for many states. The experimental observations for both isotopes were interpreted with the help of shell-model calculations using the (0+1)ω PSDPF interaction. The calculations accounted for both the 0p-0h and 1p-1h states reasonably well and indicated that 2p-2h excitations might dominate the higher-spin configurations in both P33 and P34

    Cross-shell excitations near the "island of inversion": Structure of Mg30

    Get PDF
    Excited states in Mg30 have been populated to ~6 and 5 MeV excitation energy with the C14(O18,2p) reaction. Firm spin assignments for states with J2 have been made in this nucleus. The level scheme is compared to shell-model calculations using the Universal sd effective interaction and the Monte Carlo shell model method. Calculations employing a full sd model space fail to reproduce the observed levels. The results indicate that excitations across the N=20 gap are required at relatively low excitation energy to achieve a description of the data. The incorporation of the f7/2 and p3/2 orbitals into the model space gives improved results but indicate the need for further refinement of the models to reproduce the observed spectra

    Multi-intruder structures in 34P

    Get PDF
    The available experimental information on 34P has been greatly increased through the analysis of γ decays in coincidence with protons from the interaction of an 18O beam at 24 MeV with an 18O target. Light charged particles from the reaction were detected with Microball, and multiple γ-ray coincidences with Gammasphere. Many observed γ transitions have been identified and placed in the level scheme. Additionally, for most states, spins have been assigned based on measured γ-ray angular distributions while parities were inferred from lifetimes determined through Doppler-broadened line-shape analysis. Most of the states observed have been interpreted in terms of shell-model calculations using the WBP-a and SDPF-NR interactions having one particle in the 0f7/2 or 1p3/2 orbital. The two calculations agree almost equally well with the data resulting in root-mean-square differences of about 200 keV. However, a few high-lying states observed with long lifetimes challenge current calculations. Two of these may be associated with stretched πf7/2⊗νf7/2 states, but the calculations overpredict their energies by 2-3 MeV. Furthermore, a long-lived 7919-keV state is established for which no explanation is available at present

    Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds

    Full text link
    Quasi-periodic disturbances have been observed in the outer solar atmosphere for many years now. Although first interpreted as upflows (Schrijver et al. (1999)), they have been widely regarded as slow magnetoacoustic waves, due to observed velocities and periods. However, recent observations have questioned this interpretation, as periodic disturbances in Doppler velocity, line width and profile asymmetry were found to be in phase with the intensity oscillations (De Pontieu et al. (2010),Tian1 et al. (2011))}, suggesting the disturbances could be quasi-periodic upflows. Here we conduct a detailed analysis of the velocities of these disturbances across several wavelengths using the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We analysed 41 examples, including both sunspot and non sunspot regions of the Sun. We found that the velocities of propagating disturbances (PDs) located at sunspots are more likely to be temperature dependent, whereas the velocities of PDs at non sunspot locations do not show a clear temperature dependence. We also considered on what scale the underlying driver is affecting the properties of the PDs. Finally, we found that removing the contribution due to the cooler ions in the 193 A wavelength suggests that a substantial part of the 193 emission of sunspot PDs can be contributed to the cool component of 193\AA.Comment: 26 Papges, 15 Figure

    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.

    Get PDF
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens
    corecore