589 research outputs found
Defense Acquisition: An Industry View
Symposium Presentation (for Acquisition Research Program)Symposium PresentationNaval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited
Thermodynamic approach to the dewetting instability in ultrathin films
The fluid dynamics of the classical dewetting instability in ultrathin films
is a non-linear process. However, the physical manifestation of the instability
in terms of characteristic length and time scales can be described by a
linearized form of the initial conditions of the films's dynamics. Alternately,
the thermodynamic approach based on equating the rate of free energy decrease
to the viscous dissipation [de Gennes, C. R. Acad. Paris.v298, 1984] can give
similar information. Here we have evaluated dewetting in the presence of
thermocapillary forces arising from a film-thickness (h) dependent temperature.
Such a situation can be found during pulsed laser melting of ultrathin metal
films where nanoscale effects lead to a local h-dependent temperature. The
thermodynamic approach provides an analytical description of this
thermocapillary dewetting. The results of this approach agree with those from
linear theory and experimental observations provided the minimum value of
viscous dissipation is equated to the rate of free energy decrease. The flow
boundary condition that produces this minimum viscous dissipation is when the
film-substrate tangential stress is zero. The physical implication of this
finding is that the spontaneous dewetting instability follows the path of
minimum rate of energy loss.Comment: 8 pages, 3 figures. Under revie
Role of Rare-Earth Oxide Additives on Mechanical Properties and Oxidation Behavior of Si 3 N 4 /BN Fibrous Monolith Ceramics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65415/1/j.1551-2916.2006.00911.x.pd
Investigation of pulsed laser induced dewetting in nanoscopic metal films
Hydrodynamic pattern formation (PF) and dewetting resulting from pulsed laser
induced melting of nanoscopic metal films have been used to create spatially
ordered metal nanoparticle arrays with monomodal size distribution on
SiO_{\text{2}}/Si substrates. PF was investigated for film thickness h\leq7 nm
< laser absorption depth \sim11 nm and different sets of laser parameters,
including energy density E and the irradiation time, as measured by the number
of pulses n. PF was only observed to occur for E\geq E_{m}, where E_{m} denotes
the h-dependent threshold energy required to melt the film. Even at such small
length scales, theoretical predictions for E_{m} obtained from a
continuum-level lumped parameter heat transfer model for the film temperature,
coupled with the 1-D transient heat equation for the substrate phase, were
consistent with experimental observations provided that the thickness
dependence of the reflectivity of the metal-substrate bilayer was incorporated
into the analysis. The spacing between the nanoparticles and the particle
diameter were found to increase as h^{2} and h^{5/3} respectively, which is
consistent with the predictions of the thin film hydrodynamic (TFH) dewetting
theory. These results suggest that fast thermal processing can lead to novel
pattern formation, including quenching of a wide range of length scales and
morphologies.Comment: 36 pages, 11 figures, 1 tabl
Understanding Video Game Developers as an Occupational Community
The video game industry has rapidly expanded over the last four decades; yet there is limited research about the workers who make video games. In examining these workers, this article responds to calls for renewed attention to the role of the occupation in understanding project-based workers in boundaryless careers. Specifically, this article uses secondary analysis of online sources to demonstrate that video game developers can be understood as a unique social group called an occupational community (OC). Once this classification has been made, the concept of OC can be used in future research to understand video game workers in terms of identity formation, competency development, career advancement and support, collective action, as well as adherence to and deviance from organizational and industry norms
Naturally propped fractures caused by quartz cementation preserve oil reservoirs in basement rocks
MB is in receipt of a postgraduate studentship from PTDF (Nigeria). Skilled technical support was provided by M. Baron and J. Still. Two reviewers made valuable criticisms that improved the paper.Peer reviewedPostprin
Microstructure and phase stability of suspension high velocity oxy-fuel sprayed yttria stabilised zirconia coatings from aqueous and ethanol based suspensions
Two commercial 7-8 wt.% Yttria Stabilised Zirconia (YSZ) suspensions were sprayed by Suspension High Velocity Oxy Fuel (SHVOF) thermal spraying for advanced high temperature coatings. Heat treatments of the free-standing coatings were conducted at 800 °C and 1000 °C for 72 h. The SHVOF coatings using two liquid carriers: water and ethanol, behaved differently in terms of micro-structure and phase stability. The ethanol coatings retained a fully tetragonal composition after heat treatments; while the aqueous coatings, however, underwent the undesirable tetragonal to monoclinic phase transformation at 1000 °C, which is lower than previously reported temperatures (>1200 °C) in thermal sprayed YSZ coatings. The heat treatments not only resulted in densification of both coatings, but also caused excessive crystallite growth in aqueous coatings promoting the undesirable phase transformation. On the contrary, the ethanol suspension improved the phase stability by favouring the homogenization of yttrium during spraying
- …